Cross-Database Micro-Expression Recognition: A Benchmark

Yuan Zong, Wenming Zheng, Xiaopeng Hong, Chuangao Tang, Zhen Cui, Guoying Zhao
{"title":"Cross-Database Micro-Expression Recognition: A Benchmark","authors":"Yuan Zong, Wenming Zheng, Xiaopeng Hong, Chuangao Tang, Zhen Cui, Guoying Zhao","doi":"10.1145/3323873.3326590","DOIUrl":null,"url":null,"abstract":"Cross-database micro-expression recognition (CDMER) is one of recently emerging and interesting problems in micro-expression analysis. CDMER is more challenging than the conventional micro-expression recognition (MER), because the training and testing samples in CDMER come from different micro-expression databases, resulting in inconsistency of the feature distributions between the training and testing sets. In this paper, we contribute to this topic from two aspects. First, we establish a CDMER experimental evaluation protocol and provide a standard platform for evaluating their proposed methods. Second, we conduct extensive benchmark experiments by using NINE state-of-the-art domain adaptation (DA) methods and SIX popular spatiotemporal descriptors for investigating the CDMER problem from two different perspectives and deeply analyze and discuss the experimental results. In addition, all the data and codes involving CDMER in this paper are released on our project website: http://aip.seu.edu.cn/cdmer.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3326590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cross-database micro-expression recognition (CDMER) is one of recently emerging and interesting problems in micro-expression analysis. CDMER is more challenging than the conventional micro-expression recognition (MER), because the training and testing samples in CDMER come from different micro-expression databases, resulting in inconsistency of the feature distributions between the training and testing sets. In this paper, we contribute to this topic from two aspects. First, we establish a CDMER experimental evaluation protocol and provide a standard platform for evaluating their proposed methods. Second, we conduct extensive benchmark experiments by using NINE state-of-the-art domain adaptation (DA) methods and SIX popular spatiotemporal descriptors for investigating the CDMER problem from two different perspectives and deeply analyze and discuss the experimental results. In addition, all the data and codes involving CDMER in this paper are released on our project website: http://aip.seu.edu.cn/cdmer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨数据库微表情识别:一个基准
跨数据库微表情识别(CDMER)是近年来微表情分析中出现的热点问题之一。由于CDMER中的训练样本和测试样本来自不同的微表情数据库,导致训练集和测试集之间的特征分布不一致,因此与传统的微表情识别相比,CDMER更具挑战性。在本文中,我们从两个方面对这一主题做出贡献。首先,我们建立了一个CDMER实验评估方案,并提供了一个标准的平台来评估他们提出的方法。其次,采用9种最先进的领域自适应方法和6种流行的时空描述符,从两个不同的角度对CDMER问题进行了广泛的基准实验,并对实验结果进行了深入分析和讨论。此外,本文中涉及CDMER的所有数据和代码都在我们的项目网站:http://aip.seu.edu.cn/cdmer上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EAGER Multimodal Multimedia Retrieval with vitrivr RobustiQ: A Robust ANN Search Method for Billion-scale Similarity Search on GPUs Improving What Cross-Modal Retrieval Models Learn through Object-Oriented Inter- and Intra-Modal Attention Networks DeepMarks: A Secure Fingerprinting Framework for Digital Rights Management of Deep Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1