ThaiFBDeep: A Sentimental Analysis Using Deep Learning Combined with Bag-of-Words Features on Thai Facebook Data

Phasit Charoenkwan
{"title":"ThaiFBDeep: A Sentimental Analysis Using Deep Learning Combined with Bag-of-Words Features on Thai Facebook Data","authors":"Phasit Charoenkwan","doi":"10.1109/IIAI-AAI.2018.00120","DOIUrl":null,"url":null,"abstract":"Thailand has a huge number of Facebook user. Most company has their own public page to communicate with their customers. Thus, it's desirable to perform sentimental analysis on Facebook post messages to understand customer's reaction of specific promotion, event or news. This work aims to propose a novel method to perform sentimental analysis on Thai Facebook data by combining information generated from a classical Bag-Of-Words features and advance deep learning approaches called ThaiFBDeep. Remarkably, according to Thai people usually conduct new words every year, the proposed data preprocessing techniques should be able to handle this kind of words. The experiment results show that ThaiFBDeep achieved a 91.75% of train accuracy and an 83.36% of independent test accuracy which is better than other well-known methods i.e. Naïve Bayes, Support Vector Machine, Multi-Layers Perceptron, Long Short-Term Memory and Convolution Neural Networks. These results also show that the including of Bag-Of-Words features can improve efficiency of Deep Learning based approach for sentimental analysis.","PeriodicalId":309975,"journal":{"name":"2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2018.00120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Thailand has a huge number of Facebook user. Most company has their own public page to communicate with their customers. Thus, it's desirable to perform sentimental analysis on Facebook post messages to understand customer's reaction of specific promotion, event or news. This work aims to propose a novel method to perform sentimental analysis on Thai Facebook data by combining information generated from a classical Bag-Of-Words features and advance deep learning approaches called ThaiFBDeep. Remarkably, according to Thai people usually conduct new words every year, the proposed data preprocessing techniques should be able to handle this kind of words. The experiment results show that ThaiFBDeep achieved a 91.75% of train accuracy and an 83.36% of independent test accuracy which is better than other well-known methods i.e. Naïve Bayes, Support Vector Machine, Multi-Layers Perceptron, Long Short-Term Memory and Convolution Neural Networks. These results also show that the including of Bag-Of-Words features can improve efficiency of Deep Learning based approach for sentimental analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ThaiFBDeep:使用深度学习结合词袋特征对泰国Facebook数据进行情感分析
泰国有大量的Facebook用户。大多数公司都有自己的公共页面来与客户沟通。因此,需要对Facebook帖子信息进行情感分析,以了解客户对特定促销,事件或新闻的反应。这项工作旨在提出一种新的方法来对泰国Facebook数据进行情感分析,该方法结合了经典的Bag-Of-Words特征生成的信息和称为ThaiFBDeep的先进深度学习方法。值得注意的是,根据泰国人通常每年都会使用新词,所提出的数据预处理技术应该能够处理这类词汇。实验结果表明,ThaiFBDeep的训练准确率为91.75%,独立测试准确率为83.36%,优于Naïve贝叶斯、支持向量机、多层感知机、长短期记忆和卷积神经网络等知名方法。这些结果也表明,加入词袋特征可以提高基于深度学习的情感分析方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finding High Quality Documents through Link and Click Graphs Seamless Support for International Students' Job Hunting in Japan Using Learning Log System and eBook Message from Program Chair Internet Based Interactive Transcription Support System for Woodblock-Printed Japanese Historical Book Images Common Sensing and Analyses to Visualize a Production Process with Parallelly Utilized Resource - Job-Shop and Flow-Shop Cases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1