Towards smart manufacturing: Implementation and benefits

Karim Haricha, Azeddine Khiat, Y. Issaoui, Ayoub Bahnasse, H. Ouajji
{"title":"Towards smart manufacturing: Implementation and benefits","authors":"Karim Haricha, Azeddine Khiat, Y. Issaoui, Ayoub Bahnasse, H. Ouajji","doi":"10.5383/JUSPN.15.02.004","DOIUrl":null,"url":null,"abstract":"Production activities is generating a large amount of data in different types (i.e., text, images), that is not well exploited. This data can be translated easily to knowledge that can help to predict all the risks that can impact the business, solve problems, promote efficiency of the manufacture to the maximum, make the production more flexible and improving the quality of making smart decisions, however, implementing the Smart Manufacturing(SM) concept provides this opportunity supported by the new generation of the technologies. Internet Of Things (IoT) for more connectivity and getting data in real time, Big Data to store the huge volume of data and Deep Learning algorithms(DL) to learn from the historical and real time data to generate knowledge, that can be used, predict all the risks, problem solving, and better decision-making. In this paper, we will introduce SM and the main technologies to success the implementation, the benefits, and the challenges.","PeriodicalId":376249,"journal":{"name":"J. Ubiquitous Syst. Pervasive Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Ubiquitous Syst. Pervasive Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5383/JUSPN.15.02.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Production activities is generating a large amount of data in different types (i.e., text, images), that is not well exploited. This data can be translated easily to knowledge that can help to predict all the risks that can impact the business, solve problems, promote efficiency of the manufacture to the maximum, make the production more flexible and improving the quality of making smart decisions, however, implementing the Smart Manufacturing(SM) concept provides this opportunity supported by the new generation of the technologies. Internet Of Things (IoT) for more connectivity and getting data in real time, Big Data to store the huge volume of data and Deep Learning algorithms(DL) to learn from the historical and real time data to generate knowledge, that can be used, predict all the risks, problem solving, and better decision-making. In this paper, we will introduce SM and the main technologies to success the implementation, the benefits, and the challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向智能制造:实施与效益
生产活动正在产生大量不同类型的数据(即文本、图像),这些数据没有得到很好的利用。这些数据可以很容易地转化为知识,可以帮助预测所有可能影响业务的风险,解决问题,最大限度地提高制造效率,使生产更灵活,提高做出明智决策的质量,然而,实施智能制造(SM)概念提供了新一代技术支持的机会。物联网(IoT)用于更多的连接和实时获取数据,大数据用于存储大量数据,深度学习算法(DL)用于从历史和实时数据中学习以生成知识,这些知识可以用于预测所有风险,解决问题,并做出更好的决策。在本文中,我们将介绍SM和成功实施的主要技术,好处和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimized Kappa Architecture for IoT Data Management in Smart Farming Towards Low-Cost IoT and LPWAN-Based Flood Forecast and Monitoring System Towards Performance of NLP Transformers on URL-Based Phishing Detection for Mobile Devices The way it made me feel - Creating and evaluating an in-app feedback tool for mobile apps Fire Risk Prediction Using Cloud-based Weather Data Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1