{"title":"High Dimension Lattice Vector Quantizer Design for Generalized Gaussian Distributions","authors":"L. H. Fonteles, M. Antonini","doi":"10.1109/ICIP.2007.4379985","DOIUrl":null,"url":null,"abstract":"LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.