Compressed video quality assessment with modified MSE

Sudeng Hu, Lina Jin, C.-C. Jay Kuo
{"title":"Compressed video quality assessment with modified MSE","authors":"Sudeng Hu, Lina Jin, C.-C. Jay Kuo","doi":"10.1109/APSIPA.2014.7041643","DOIUrl":null,"url":null,"abstract":"A method to adjust the mean-squared-errors (MSE) value for coded video quality assessment is investigated in this work by incorporating subjective human visual experience. First, we propose a linear model between the mean opinioin score (MOS) and a logarithmic function of the MSE value of coded video under a range of coding rates. This model is validated by experimental data. With further simplification, this model contains only one parameter to be determined by video characteristics. Next, we adopt a machine learing method to learn this parameter. Specifically, we select features to classify video content into groups, where videos in each group are more homoegeneous in their characteristics. Then, a proper model parameter can be trained and predicted within each video group. Experimental results on a coded video database are given to demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A method to adjust the mean-squared-errors (MSE) value for coded video quality assessment is investigated in this work by incorporating subjective human visual experience. First, we propose a linear model between the mean opinioin score (MOS) and a logarithmic function of the MSE value of coded video under a range of coding rates. This model is validated by experimental data. With further simplification, this model contains only one parameter to be determined by video characteristics. Next, we adopt a machine learing method to learn this parameter. Specifically, we select features to classify video content into groups, where videos in each group are more homoegeneous in their characteristics. Then, a proper model parameter can be trained and predicted within each video group. Experimental results on a coded video database are given to demonstrate the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进MSE的压缩视频质量评估
本文研究了一种结合人的主观视觉经验来调整编码视频质量评估中均方误差(MSE)值的方法。首先,在一定的编码率范围内,我们提出了一个平均意见分数(MOS)与编码视频的MSE值的对数函数之间的线性模型。实验数据验证了该模型的正确性。进一步简化后,该模型只包含一个由视频特征决定的参数。接下来,我们采用机器学习的方法来学习这个参数。具体来说,我们选择特征来将视频内容分类,每组中的视频在特征上更加相似。然后,在每个视频组内训练和预测合适的模型参数。在一个编码视频库上的实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing of spatial filter by graph Fourier transform for EEG signals Intra line copy for HEVC screen content coding Design of FPGA-based rapid prototype spectral subtraction for hands-free speech applications Fetal ECG extraction using adaptive functional link artificial neural network Opened Pins Recommendation System to promote tourism sector in Chiang Rai Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1