Individual Recognition of Communication Emitter Based on Deep Learning

Jie Xu, Weiguo Shen, Wei Wang
{"title":"Individual Recognition of Communication Emitter Based on Deep Learning","authors":"Jie Xu, Weiguo Shen, Wei Wang","doi":"10.1109/ISAPE.2018.8634244","DOIUrl":null,"url":null,"abstract":"In view of the individual recognition problem of the communication emitter, this paper, starting with the subtle characteristics of the communication emitter in the signal layer, proposes a method of individual recognition based on deep learning. First, a recognition framework based on deep learning is established, and a convolution neural network containing two hidden layers is designed to extract local features through two layers convolution operations. Secondly, the stochastic gradient descent method is used to optimize the parameters, and the soft max model is used to determine the output label. Finally, the effectiveness of the method is verified by experiments.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPE.2018.8634244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In view of the individual recognition problem of the communication emitter, this paper, starting with the subtle characteristics of the communication emitter in the signal layer, proposes a method of individual recognition based on deep learning. First, a recognition framework based on deep learning is established, and a convolution neural network containing two hidden layers is designed to extract local features through two layers convolution operations. Secondly, the stochastic gradient descent method is used to optimize the parameters, and the soft max model is used to determine the output label. Finally, the effectiveness of the method is verified by experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的通信发射器个体识别
针对通信发射机的个体识别问题,本文从通信发射机在信号层的细微特征出发,提出了一种基于深度学习的个体识别方法。首先,建立了基于深度学习的识别框架,设计了包含两层隐藏层的卷积神经网络,通过两层卷积运算提取局部特征;其次,采用随机梯度下降法对参数进行优化,并采用软最大值模型确定输出标号;最后,通过实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bi-iterative MVDR Beamforming based on Beamspace Preprocessing for MIMO radars Statistical Estimation of Uncertainty in Surface Duct Parameters Inversion On the Virtual Cell Power Allocation in Ultra Dense Networks Radar Target Recognition Based on Polarization Invariant An Irregular Elliptical Monopole Antenna for Ultra-Wide-Band (UWB) Applications with Dual Notched Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1