Capacity Analysis of Adaptive Combining for Hybrid FSO/RF Satellite Communication System

Narendra Vishwakarma, S. R.
{"title":"Capacity Analysis of Adaptive Combining for Hybrid FSO/RF Satellite Communication System","authors":"Narendra Vishwakarma, S. R.","doi":"10.1109/NCC52529.2021.9530144","DOIUrl":null,"url":null,"abstract":"Satellite communication (SATCOM) systems are generally used for broadcasting, disaster recovery, and navigation applications due to the large coverage area. Deployment of more SATCOM systems require a high data rate and large communication capacity. On the other hand, free space optics (FSO) technology has fulfilled the needs of the gigabit capacity due to its exemplary features. Nevertheless, the FSO link is vulnerable to atmospheric turbulence, pointing errors, weather conditions like fog, snow etc. Subsequently, the more reliable radio frequency (RF) link can be used in combination with the FSO link to counteract the limitations. Therefore, a hybrid FSO/RF system is a promising solution for next-generation satellite communication (SATCOM) systems. In this context, we investigate an adaptive-combining-based switching scheme for a hybrid FSO/RF system considering both uplink and downlink SATCOM scenarios. Adaptive combining involves switching of the FSO link to maximal ratio combining (MRC) of FSO and RF links provided the operating FSO link quality becomes unacceptable for transmission. Further, in this paper, the performance of the adaptive-combining-based hybrid FSO/RF system is examined through exact and asymptotic ergodic capacity analyses.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Satellite communication (SATCOM) systems are generally used for broadcasting, disaster recovery, and navigation applications due to the large coverage area. Deployment of more SATCOM systems require a high data rate and large communication capacity. On the other hand, free space optics (FSO) technology has fulfilled the needs of the gigabit capacity due to its exemplary features. Nevertheless, the FSO link is vulnerable to atmospheric turbulence, pointing errors, weather conditions like fog, snow etc. Subsequently, the more reliable radio frequency (RF) link can be used in combination with the FSO link to counteract the limitations. Therefore, a hybrid FSO/RF system is a promising solution for next-generation satellite communication (SATCOM) systems. In this context, we investigate an adaptive-combining-based switching scheme for a hybrid FSO/RF system considering both uplink and downlink SATCOM scenarios. Adaptive combining involves switching of the FSO link to maximal ratio combining (MRC) of FSO and RF links provided the operating FSO link quality becomes unacceptable for transmission. Further, in this paper, the performance of the adaptive-combining-based hybrid FSO/RF system is examined through exact and asymptotic ergodic capacity analyses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FSO/RF混合卫星通信系统自适应组合容量分析
卫星通信(SATCOM)系统由于覆盖面积大,通常用于广播、灾难恢复和导航等应用。部署更多的卫星通信系统需要高数据速率和大通信容量。另一方面,自由空间光学(FSO)技术由于其典型的特性已经满足了千兆容量的需求。然而,FSO链路容易受到大气湍流、指向错误、雾、雪等天气条件的影响。随后,更可靠的射频(RF)链路可以与FSO链路结合使用,以抵消这些限制。因此,FSO/RF混合系统是下一代卫星通信(SATCOM)系统的一个有前途的解决方案。在这种情况下,我们研究了一种基于自适应组合的混合FSO/RF系统交换方案,考虑了上行链路和下行链路的SATCOM方案。自适应合并是指当运行的FSO链路质量变得无法传输时,将FSO链路切换到FSO和RF链路的最大比率合并(MRC)。此外,本文还通过精确和渐近遍历容量分析来检验基于自适应组合的FSO/RF混合系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Image Retrieval using Muti-Scale Local Bit-plane Arbitrary Shaped Patterns Forensics of Decompressed JPEG Color Images Based on Chroma Subsampling Optimized Bio-inspired Spiking Neural Models based Anatomical and Functional Neurological Image Fusion in NSST Domain Improved Hankel Norm Criterion for Interfered Nonlinear Digital Filters Subjected to Hardware Constraints The Capacity of Photonic Erasure Channels with Detector Dead Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1