Monitoring and Improving the Quality of ODC Data using the "ODC Harmony Matrices": A Case Study

Nirav Saraiya, Jason E. Lohner, Jongmoon Baik
{"title":"Monitoring and Improving the Quality of ODC Data using the \"ODC Harmony Matrices\": A Case Study","authors":"Nirav Saraiya, Jason E. Lohner, Jongmoon Baik","doi":"10.1109/SERA.2006.52","DOIUrl":null,"url":null,"abstract":"Orthogonal defect classification (ODC) is an advanced software engineering technique to provide in-process feedback to developers and testers using defect data. ODC institutionalization in a large organization involves some challenging roadblocks such as the poor quality of the collected data leading to wrong analysis. In this paper, we have proposed a technique ('Harmony Matrix') to improve the data collection process. The ODC Harmony Matrix has useful applications. At the individual defect level, results can be used to raise alerts to practitioners at the point of data collection if a low probability combination is chosen. At the higher level, the ODC Harmony Matrix helps in monitoring the quality of the collected ODC data. The ODC Harmony Matrix complements other approaches to monitor and enhances the ODC data collection process and helps in successful ODC institutionalization, ultimately improving both the product and the process. The paper also describes precautions to take while using this approach","PeriodicalId":187207,"journal":{"name":"Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA.2006.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Orthogonal defect classification (ODC) is an advanced software engineering technique to provide in-process feedback to developers and testers using defect data. ODC institutionalization in a large organization involves some challenging roadblocks such as the poor quality of the collected data leading to wrong analysis. In this paper, we have proposed a technique ('Harmony Matrix') to improve the data collection process. The ODC Harmony Matrix has useful applications. At the individual defect level, results can be used to raise alerts to practitioners at the point of data collection if a low probability combination is chosen. At the higher level, the ODC Harmony Matrix helps in monitoring the quality of the collected ODC data. The ODC Harmony Matrix complements other approaches to monitor and enhances the ODC data collection process and helps in successful ODC institutionalization, ultimately improving both the product and the process. The paper also describes precautions to take while using this approach
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用“ODC和谐矩阵”监测和改进ODC数据的质量:一个案例研究
正交缺陷分类(ODC)是一种先进的软件工程技术,它使用缺陷数据向开发人员和测试人员提供过程中反馈。大型组织中的ODC制度化涉及一些具有挑战性的障碍,例如收集的数据质量差,导致错误的分析。在本文中,我们提出了一种技术(“和谐矩阵”)来改进数据收集过程。ODC和谐矩阵有很多有用的应用。在单个缺陷级别,如果选择了低概率的组合,结果可以用于在数据收集点向从业者发出警报。在更高的级别上,ODC和谐矩阵有助于监视所收集的ODC数据的质量。ODC和谐矩阵补充了监视和增强ODC数据收集过程的其他方法,并有助于ODC成功制度化,最终改进产品和过程。本文还描述了使用这种方法时应采取的预防措施
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of Situation-Middleware for TPO metadata based on Event-Condition-Action Rule Risk Management through Architecture Design Specification for Visual Requirements of Work-Centered Software Systems Mock Object Models for Test Driven Development Active Intelligent Service Offer System Addition Environment variable and Local variable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1