Deep Neural Network Compression Method Based on Product Quantization

Xiuqin Fang, Han Liu, Guo Xie, Youmin Zhang, Ding Liu
{"title":"Deep Neural Network Compression Method Based on Product Quantization","authors":"Xiuqin Fang, Han Liu, Guo Xie, Youmin Zhang, Ding Liu","doi":"10.23919/CCC50068.2020.9188698","DOIUrl":null,"url":null,"abstract":"In this paper a method based on the combination of product quantization and pruning to compress deep neural network with large size model and great amount of calculation is proposed. First of all, we use pruning to reduce redundant parameters in deep neural network, and then refine the tune network for fine tuning. Then we use product quantization to quantize the parameters of the neural network to 8 bits, which reduces the storage overhead so that the deep neural network can be deployed in embedded devices. For the classification tasks in the Mnist dataset and Cifar10 dataset, the network models such as LeNet5, AlexNet, ResNet are compressed to 23 to 38 times without losing accuracy as much as possible.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper a method based on the combination of product quantization and pruning to compress deep neural network with large size model and great amount of calculation is proposed. First of all, we use pruning to reduce redundant parameters in deep neural network, and then refine the tune network for fine tuning. Then we use product quantization to quantize the parameters of the neural network to 8 bits, which reduces the storage overhead so that the deep neural network can be deployed in embedded devices. For the classification tasks in the Mnist dataset and Cifar10 dataset, the network models such as LeNet5, AlexNet, ResNet are compressed to 23 to 38 times without losing accuracy as much as possible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于积量化的深度神经网络压缩方法
本文提出了一种基于积量化和剪枝相结合的方法来压缩模型大、计算量大的深度神经网络。首先对深度神经网络进行剪枝,减少冗余参数,然后对调谐网络进行微调。然后利用积量化将神经网络的参数量化到8位,减少了存储开销,使深度神经网络能够部署在嵌入式设备中。对于Mnist数据集和Cifar10数据集中的分类任务,LeNet5、AlexNet、ResNet等网络模型被压缩到23 ~ 38倍,同时尽量不损失准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1