Quantitative analytical model of the formation damage by gel particles

M. Elsharafi, L. Saleh, B. Bai
{"title":"Quantitative analytical model of the formation damage by gel particles","authors":"M. Elsharafi, L. Saleh, B. Bai","doi":"10.6000/1929-6002.2016.05.04.3","DOIUrl":null,"url":null,"abstract":"Formation damage by gel particles has become one of the most important problems in mature reservoirs. The objective of the quantitative analytical model is to identify an analytical model to the best fit of the preformed particle gels (PPGs) filtration test results. This work will analyze the experiments results of low permeability core samples to evaluate the effect of various brine concentrations and particle sizes. This study used a linear analytical model relationship between cumulative volumes versus filtration time with a good fits result. Linear curve equations for the best fitting equation was obtained. According to quantitative analytical model for all of our filtration tests, the cumulative filtration test volume (Vcf) was explained in this paper. Quantitative analytical model results showed the value of the slop m increases as the injection pressure increases. Compared with the experiments, the results show that, if the value of the intercept b > 2 the damage occurred because the gel particles invasion started into the core surface. Results from the quantitative analytical model were indicated to have a good fitting with almost all of the experimental results. It is the first time to use quantitative analytical model to analysis the formation damage by the PPGs. The results can be used to select the best gel treatment design.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2016.05.04.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Formation damage by gel particles has become one of the most important problems in mature reservoirs. The objective of the quantitative analytical model is to identify an analytical model to the best fit of the preformed particle gels (PPGs) filtration test results. This work will analyze the experiments results of low permeability core samples to evaluate the effect of various brine concentrations and particle sizes. This study used a linear analytical model relationship between cumulative volumes versus filtration time with a good fits result. Linear curve equations for the best fitting equation was obtained. According to quantitative analytical model for all of our filtration tests, the cumulative filtration test volume (Vcf) was explained in this paper. Quantitative analytical model results showed the value of the slop m increases as the injection pressure increases. Compared with the experiments, the results show that, if the value of the intercept b > 2 the damage occurred because the gel particles invasion started into the core surface. Results from the quantitative analytical model were indicated to have a good fitting with almost all of the experimental results. It is the first time to use quantitative analytical model to analysis the formation damage by the PPGs. The results can be used to select the best gel treatment design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凝胶颗粒对地层破坏的定量分析模型
凝胶颗粒对地层的破坏已成为成熟油藏的重要问题之一。定量分析模型的目的是确定一种最适合预成型颗粒凝胶(PPGs)过滤试验结果的分析模型。本文将对低渗透岩心样品的实验结果进行分析,以评价不同卤水浓度和粒径的影响。本研究采用了累积体积与过滤时间之间的线性分析模型,拟合结果良好。得到了最佳拟合方程的线性曲线方程。根据我们所有过滤试验的定量分析模型,对累积过滤试验体积(Vcf)进行了解释。定量分析模型结果表明,随着注入压力的增大,斜率m值增大。与实验结果对比表明,当截距b > 2时,由于凝胶颗粒侵入岩心表面而发生损伤。定量分析模型的结果与几乎所有的实验结果拟合良好。首次采用定量分析模型对PPGs对地层的伤害进行了分析。结果可用于选择最佳凝胶处理方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia A Comparative Study on the Renewable Energy Related Curriculums in the Universities in Guangdong- Hong Kong- Macao Greater Bay Area Numerical Modeling Prediction of Thermal Storage during Discharging Phase, PV- Thermal Solar and with Nanofluids Bathocuproine Buffer Layer Effect on the Performance of Inverted Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1