{"title":"Experiments on extracting structural information from paper documents using syntactic pattern analysis","authors":"T. Bayer, H. Walischewski","doi":"10.1109/ICDAR.1995.599039","DOIUrl":null,"url":null,"abstract":"Extracting structural information from paper documents supports the daily document processing by, for example, automatically finding index terms, document topics, etc. Knowledge about such components are modeled in a semantic net, which describes geometric properties, spatial relationships, lexical entities as well as lexical relationships. The document model is used to extract the sender, date, recipient, opening and closing formula from a business letter. 181 business letters have been processed, divided into a training set of 20 and the remaining ones for testing. The error rates for the test set range from 0.022 to 0.049 by an average rejection rate of 0.4. Results show that the computational effort can be limited to O(n/sup 2/) given n primitive objects for matching.","PeriodicalId":273519,"journal":{"name":"Proceedings of 3rd International Conference on Document Analysis and Recognition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1995.599039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Extracting structural information from paper documents supports the daily document processing by, for example, automatically finding index terms, document topics, etc. Knowledge about such components are modeled in a semantic net, which describes geometric properties, spatial relationships, lexical entities as well as lexical relationships. The document model is used to extract the sender, date, recipient, opening and closing formula from a business letter. 181 business letters have been processed, divided into a training set of 20 and the remaining ones for testing. The error rates for the test set range from 0.022 to 0.049 by an average rejection rate of 0.4. Results show that the computational effort can be limited to O(n/sup 2/) given n primitive objects for matching.