Bayesian Approach to Users' Perspective on Movie Genres

Artem Lenskiy, Eric Makita
{"title":"Bayesian Approach to Users' Perspective on Movie Genres","authors":"Artem Lenskiy, Eric Makita","doi":"10.6109/jicce.2017.15.1.43","DOIUrl":null,"url":null,"abstract":"Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: “Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?” The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"103 E13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2017.15.1.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: “Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?” The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用户对电影类型看法的贝叶斯方法
电影评级对于跟踪所有用户的行为并利用这些信息来推荐用户可能喜欢的项目的推荐引擎来说是至关重要的。从直观上讲,关于电影类型的观看偏好的信息足以预测未标记电影的类型,这很吸引人。为了预测电影类型,我们将评分作为特征向量,应用伯努利事件模型来估计电影被指定为特定类型的可能性,并使用贝叶斯规则评估给定电影类型的后验概率。所提出的技术的目标是有效地使用电影评级来预测电影类型。在我们的方法中,我们试图回答这样一个问题:“给定观看电影的用户集,是否有可能根据其评级来预测电影的类型?”基于MovieLens 1M数据的仿真结果证明了该方法的效率和准确性,在精确预测时的预测率为83.8%,在包含相关类型时的预测率为84.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling Smart Home System Using Internet of Things Odoo Data Mining Module Using Market Basket Analysis Seafarers Walking on an Unstable Platform: Comparisons of Time and Frequency Domain Analyses for Gait Event Detection Navigator Lookout Activity Classification Using Wearable Accelerometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1