{"title":"Footstep and Timing Adaptation for Humanoid Robots Utilizing Pre-computation of Capture Regions","authors":"Y. Tazaki","doi":"10.1109/HUMANOIDS47582.2021.9555675","DOIUrl":null,"url":null,"abstract":"This study proposes a real-time footstep and timing adaptation mechanism for humanoid robots that can be integrated into a conventional walking pattern generator and increase the robustness of walking against disturbances. In order to meet the strict real-time constraint of humanoid robot control, the proposed method computes viable capture basins in the design phase. This pre-computed data can be used at runtime to modify the foot placement, the timing of landing, and the center-of-mass movement in response to applied disturbances with small computation cost. The performance of the proposed method is evaluated in simulation experiments.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study proposes a real-time footstep and timing adaptation mechanism for humanoid robots that can be integrated into a conventional walking pattern generator and increase the robustness of walking against disturbances. In order to meet the strict real-time constraint of humanoid robot control, the proposed method computes viable capture basins in the design phase. This pre-computed data can be used at runtime to modify the foot placement, the timing of landing, and the center-of-mass movement in response to applied disturbances with small computation cost. The performance of the proposed method is evaluated in simulation experiments.