Spatially-variant mathematical morphology for color images

Sara Belmil, M. Charif-Chefchaouni
{"title":"Spatially-variant mathematical morphology for color images","authors":"Sara Belmil, M. Charif-Chefchaouni","doi":"10.1109/ATSIP.2017.8075539","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach of the generalization of the Spatially-Variant Morphological Operators to the color images, that preserves the concept of the structuring function. Two methods are suggested. The first method is based on total ordering and the second on marginal treatment of each component of the image. For each method, we define the notion of Spatially-Variant (SV) structuring elements, the basic color operators (dilation, erosion, opening and closing). The former operators allow the construction of morphological filters obtained by infimum, supremum and composition operations. Examples are provided through simulations to show the potential power of the defined operators for image filtering.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an approach of the generalization of the Spatially-Variant Morphological Operators to the color images, that preserves the concept of the structuring function. Two methods are suggested. The first method is based on total ordering and the second on marginal treatment of each component of the image. For each method, we define the notion of Spatially-Variant (SV) structuring elements, the basic color operators (dilation, erosion, opening and closing). The former operators allow the construction of morphological filters obtained by infimum, supremum and composition operations. Examples are provided through simulations to show the potential power of the defined operators for image filtering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
彩色图像的空间变化数学形态学
本文提出了一种将空间变异形态学算子推广到彩色图像的方法,该方法保留了结构函数的概念。建议采用两种方法。第一种方法是基于总排序,第二种方法是对图像的每个分量进行边缘处理。对于每种方法,我们定义了空间变异(SV)结构元素的概念,基本颜色算子(膨胀,侵蚀,打开和关闭)。前一种运算符允许构造由最小、最大和复合运算得到的形态滤波器。通过仿真给出了示例,以显示所定义的算子在图像滤波中的潜在能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1