Model Predictive Control of Linear Parameter-Varying Systems Using Gaussian Processes

Ahmed Elkamel, A. Morsi, M. Darwish, H. S. Abbas, Mohamed H. Amin
{"title":"Model Predictive Control of Linear Parameter-Varying Systems Using Gaussian Processes","authors":"Ahmed Elkamel, A. Morsi, M. Darwish, H. S. Abbas, Mohamed H. Amin","doi":"10.1109/ICSTCC55426.2022.9931885","DOIUrl":null,"url":null,"abstract":"Linear parameter-varying (LPV) modeling is a powerful framework for representing time-varying systems as well as nonlinear dynamics in terms of a linear structure dependent on a time-varying parameter known as the scheduling parameter. Combining model predictive control (MPC) with LPV predictors (LPVMPC) results in an efficient parameter-dependent MPC approach. However, the future trajectory of the scheduling parameter required for formulating the LPVMPC optimization problem is not known in advance. In this paper, a Bayesian nonparametric approach within Gaussian process (GP) regression framework is introduced to predict the future behavior of the scheduling parameter over the MPC prediction horizon, which can be exploited by the proposed LPVMPC approach. The performance of the presented approach, i.e., GP-LPVMPC, is tested on a simulation example, where it is demonstrated that it outperforms the LPVMPC when the scheduling variable is frozen over the MPC prediction horizon in terms of convergence and control performance.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Linear parameter-varying (LPV) modeling is a powerful framework for representing time-varying systems as well as nonlinear dynamics in terms of a linear structure dependent on a time-varying parameter known as the scheduling parameter. Combining model predictive control (MPC) with LPV predictors (LPVMPC) results in an efficient parameter-dependent MPC approach. However, the future trajectory of the scheduling parameter required for formulating the LPVMPC optimization problem is not known in advance. In this paper, a Bayesian nonparametric approach within Gaussian process (GP) regression framework is introduced to predict the future behavior of the scheduling parameter over the MPC prediction horizon, which can be exploited by the proposed LPVMPC approach. The performance of the presented approach, i.e., GP-LPVMPC, is tested on a simulation example, where it is demonstrated that it outperforms the LPVMPC when the scheduling variable is frozen over the MPC prediction horizon in terms of convergence and control performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯过程的线性变参数系统模型预测控制
线性参数变化(LPV)建模是一个强大的框架,用于表示时变系统以及依赖于时变参数(称为调度参数)的线性结构的非线性动力学。将模型预测控制(MPC)与LPV预测器(LPVMPC)相结合,得到了一种有效的参数依赖的MPC方法。然而,制定LPVMPC优化问题所需的调度参数的未来轨迹是未知的。本文在高斯过程(GP)回归框架中引入了一种贝叶斯非参数方法来预测调度参数在MPC预测范围内的未来行为,该方法可以被LPVMPC方法所利用。通过仿真实例验证了该方法的性能,结果表明,当调度变量冻结在MPC预测范围内时,该方法在收敛性和控制性能方面优于LPVMPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of 5G communication based on distance evaluation using the SIM8200EA-M2 module Using 3D Scanning Techniques from Robotic Applications in the Constructions Domain Chen-Fliess Series for Linear Distributed Systems with One Spatial Dimension Component generator for the development of RESTful APIs Sensitivity-Based Iterative State-Feedback Tuning for Nonlinear Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1