Precision enhancement of 3D surfaces from multiple quantized depth maps

Pengfei Wan, Gene Cheung, P. Chou, D. Florêncio, Cha Zhang, O. Au
{"title":"Precision enhancement of 3D surfaces from multiple quantized depth maps","authors":"Pengfei Wan, Gene Cheung, P. Chou, D. Florêncio, Cha Zhang, O. Au","doi":"10.1109/IVMSPW.2013.6611913","DOIUrl":null,"url":null,"abstract":"Transmitting from sender compressed texture and depth maps of multiple viewpoints enables image synthesis at receiver from any intermediate virtual viewpoint via depth-image-based rendering (DIBR). We observe that quantized depth maps from different viewpoints of the same 3D scene constitutes multiple descriptions (MD) of the same signal, thus it is possible to reconstruct the 3D scene in higher precision at receiver when multiple depth maps are considered jointly. In this paper, we cast the precision enhancement of 3D surfaces from multiple quantized depth maps as a combinatorial optimization problem. First, we derive a lemma that allows us to increase the precision of a subset of 3D points with certainty, simply by discovering special intersections of quantization bins (QB) from both views. Then, we identify the most probable voxel-containing QB intersections using a shortest-path formulation. Experimental results show that our method can significantly increase the precision of decoded depth maps compared with standard decoding schemes.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Transmitting from sender compressed texture and depth maps of multiple viewpoints enables image synthesis at receiver from any intermediate virtual viewpoint via depth-image-based rendering (DIBR). We observe that quantized depth maps from different viewpoints of the same 3D scene constitutes multiple descriptions (MD) of the same signal, thus it is possible to reconstruct the 3D scene in higher precision at receiver when multiple depth maps are considered jointly. In this paper, we cast the precision enhancement of 3D surfaces from multiple quantized depth maps as a combinatorial optimization problem. First, we derive a lemma that allows us to increase the precision of a subset of 3D points with certainty, simply by discovering special intersections of quantization bins (QB) from both views. Then, we identify the most probable voxel-containing QB intersections using a shortest-path formulation. Experimental results show that our method can significantly increase the precision of decoded depth maps compared with standard decoding schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从多个量化深度图中提高三维表面的精度
从发送方传输压缩的纹理和多视点深度图,可以通过基于深度图像的渲染(DIBR)从任何中间虚拟视点在接收方进行图像合成。研究发现,同一三维场景不同视点的量化深度图构成了对同一信号的多个描述(MD),因此当多个深度图联合考虑时,可以在接收端以更高的精度重建三维场景。本文将多个量化深度图对三维曲面的精度增强作为一个组合优化问题。首先,我们推导出一个引理,它允许我们通过从两个视图中发现量化箱(QB)的特殊交叉点来确定地增加3D点子集的精度。然后,我们使用最短路径公式确定最可能的包含体素的QB相交。实验结果表明,与标准的深度图译码方案相比,该方法可以显著提高深度图译码的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D activity measurement for stereoscopic video Flicker-free 3D shutter glasses by retardnace control of LC cell Multi-source inverse geometry CT(MS-IGCT) system: A new concept of 3D CT imaging Subjective assessment methodology for preference of experience in 3DTV Camera trajectory recovery for image-based city street modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1