Using closed captions to train activity recognizers that improve video retrieval

S. Gupta, R. Mooney
{"title":"Using closed captions to train activity recognizers that improve video retrieval","authors":"S. Gupta, R. Mooney","doi":"10.1109/CVPRW.2009.5204202","DOIUrl":null,"url":null,"abstract":"Recognizing activities in real-world videos is a difficult problem exacerbated by background clutter, changes in camera angle & zoom, rapid camera movements etc. Large corpora of labeled videos can be used to train automated activity recognition systems, but this requires expensive human labor and time. This paper explores how closed captions that naturally accompany many videos can act as weak supervision that allows automatically collecting `labeled' data for activity recognition. We show that such an approach can improve activity retrieval in soccer videos. Our system requires no manual labeling of video clips and needs minimal human supervision. We also present a novel caption classifier that uses additional linguistic information to determine whether a specific comment refers to an on-going activity. We demonstrate that combining linguistic analysis and automatically trained activity recognizers can significantly improve the precision of video retrieval.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recognizing activities in real-world videos is a difficult problem exacerbated by background clutter, changes in camera angle & zoom, rapid camera movements etc. Large corpora of labeled videos can be used to train automated activity recognition systems, but this requires expensive human labor and time. This paper explores how closed captions that naturally accompany many videos can act as weak supervision that allows automatically collecting `labeled' data for activity recognition. We show that such an approach can improve activity retrieval in soccer videos. Our system requires no manual labeling of video clips and needs minimal human supervision. We also present a novel caption classifier that uses additional linguistic information to determine whether a specific comment refers to an on-going activity. We demonstrate that combining linguistic analysis and automatically trained activity recognizers can significantly improve the precision of video retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用封闭字幕训练活动识别器,提高视频检索
在现实世界的视频中识别活动是一个困难的问题,由于背景混乱、摄像机角度和变焦的变化、摄像机快速移动等原因而加剧。大型标记视频语料库可用于训练自动活动识别系统,但这需要昂贵的人力和时间。本文探讨了许多视频自然伴随的封闭字幕如何作为弱监督,允许自动收集“标记”数据以进行活动识别。我们证明了这种方法可以提高足球视频的活动检索。我们的系统不需要对视频片段进行人工标记,只需要最少的人工监督。我们还提出了一种新的标题分类器,它使用额外的语言信息来确定特定评论是否指的是正在进行的活动。我们证明了语言分析和自动训练的活动识别器相结合可以显著提高视频检索的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1