Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation

Yun He, Haochen Chen, Ziwei Zhu, James Caverlee
{"title":"Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation","authors":"Yun He, Haochen Chen, Ziwei Zhu, James Caverlee","doi":"10.1109/ICDM.2018.00129","DOIUrl":null,"url":null,"abstract":"We propose PsiRec, a novel user preference propagation recommender that incorporates pseudo-implicit feedback for enriching the original sparse implicit feedback dataset. Three of the unique characteristics of PsiRec are: (i) it views user-item interactions as a bipartite graph and models pseudo-implicit feedback from this perspective; (ii) its random walks-based approach extracts graph structure information from this bipartite graph, toward estimating pseudo-implicit feedback; and (iii) it adopts a Skip-gram inspired measure of confidence in pseudo-implicit feedback that captures the pointwise mutual information between users and items. This pseudo-implicit feedback is ultimately incorporated into a new latent factor model to estimate user preference in cases of extreme sparsity. PsiRec results in improvements of 21.5% and 22.7% in terms of Precision@10 and Recall@10 over state-of-the-art Collaborative Denoising Auto-Encoders. Our implementation is available at https://github.com/heyunh2015/PsiRecICDM2018.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose PsiRec, a novel user preference propagation recommender that incorporates pseudo-implicit feedback for enriching the original sparse implicit feedback dataset. Three of the unique characteristics of PsiRec are: (i) it views user-item interactions as a bipartite graph and models pseudo-implicit feedback from this perspective; (ii) its random walks-based approach extracts graph structure information from this bipartite graph, toward estimating pseudo-implicit feedback; and (iii) it adopts a Skip-gram inspired measure of confidence in pseudo-implicit feedback that captures the pointwise mutual information between users and items. This pseudo-implicit feedback is ultimately incorporated into a new latent factor model to estimate user preference in cases of extreme sparsity. PsiRec results in improvements of 21.5% and 22.7% in terms of Precision@10 and Recall@10 over state-of-the-art Collaborative Denoising Auto-Encoders. Our implementation is available at https://github.com/heyunh2015/PsiRecICDM2018.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓解Top-K推荐中数据稀疏性的伪隐式反馈
我们提出了一种新的用户偏好传播推荐器PsiRec,它结合了伪隐式反馈来丰富原始稀疏隐式反馈数据集。PsiRec的三个独特特征是:(i)它将用户-项目交互视为一个二部图,并从这个角度建模伪隐式反馈;(ii)基于随机行走的方法从二部图中提取图结构信息,用于估计伪隐式反馈;(iii)在伪隐式反馈中采用Skip-gram启发的置信度度量,捕获用户和项目之间的点对点相互信息。这种伪隐式反馈最终被纳入一个新的潜在因素模型,以估计极端稀疏情况下的用户偏好。与最先进的协同去噪自动编码器相比,PsiRec在Precision@10和Recall@10方面分别提高了21.5%和22.7%。我们的实现可以在https://github.com/heyunh2015/PsiRecICDM2018上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1