Automatic estimation of clusters number for K-means

M. A. Sabri, A. Ennouni, A. Aarab
{"title":"Automatic estimation of clusters number for K-means","authors":"M. A. Sabri, A. Ennouni, A. Aarab","doi":"10.1109/CIST.2016.7805089","DOIUrl":null,"url":null,"abstract":"At the present time, clustering algorithms are popular analysis tools in image segmentation. For instance, the K-means is one of the most used algorithms in the literature and it is fast, robust and easier to understand and to implement but, the main drawback of the K-means algorithm is that the number of clusters must be known a priori and must be supplied as an input parameter. This paper discusses the problem of the estimation of the number of clusters for image segmentation and proposes a new approach which is based on histogram to find a suitable number of K (the number of clusters). Experimental results demonstrate the effectiveness of our method to estimate the correct number of clusters which reflect a good separation of objects for each image.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7805089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

At the present time, clustering algorithms are popular analysis tools in image segmentation. For instance, the K-means is one of the most used algorithms in the literature and it is fast, robust and easier to understand and to implement but, the main drawback of the K-means algorithm is that the number of clusters must be known a priori and must be supplied as an input parameter. This paper discusses the problem of the estimation of the number of clusters for image segmentation and proposes a new approach which is based on histogram to find a suitable number of K (the number of clusters). Experimental results demonstrate the effectiveness of our method to estimate the correct number of clusters which reflect a good separation of objects for each image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k均值聚类数的自动估计
聚类算法是目前常用的图像分割分析工具。例如,K-means是文献中最常用的算法之一,它快速,鲁棒,易于理解和实现,但是,K-means算法的主要缺点是必须先验地知道簇的数量,并且必须作为输入参数提供。讨论了图像分割中聚类数目的估计问题,提出了一种基于直方图的聚类数目K的估计方法。实验结果表明,我们的方法可以有效地估计出正确的簇数,从而反映出每个图像中物体的良好分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantically enhanced term frequency based on word embeddings for Arabic information retrieval Automatic generation of TestNG tests cases from UML sequence diagrams in Scrum process Coordination by sharing demand forecasts in a supply chain using game theoretic approach Robust approach for textured image clustering High speed efficient FPGA implementation of pipelined AES S-Box
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1