Wikipedia Mining for Huge Scale Japanese Association Thesaurus Construction

Kotaro Nakayama, Masahiro Ito, T. Hara, S. Nishio
{"title":"Wikipedia Mining for Huge Scale Japanese Association Thesaurus Construction","authors":"Kotaro Nakayama, Masahiro Ito, T. Hara, S. Nishio","doi":"10.1109/WAINA.2008.37","DOIUrl":null,"url":null,"abstract":"Wikipedia, a huge scale Web-based dictionary, is an impressive corpus for knowledge extraction. We already proved that Wikipedia can be used for constructing an English association thesaurus and our link structure mining method is significantly effective for this aim. However, we want to find out how we can apply this method to other languages and what the requirements, differences and characteristics are. Nowadays, Wikipedia supports more than 250 languages such as English, German, French, Polish and Japanese. Among Asian languages, the Japanese Wikipedia is the largest corpus in Wikipedia. In this research, therefore, we analyzed all Japanese articles in Wikipedia and constructed a huge scale Japanese association thesaurus. After constructing the thesaurus, we realized that it shows several impressive characteristics depending on language and culture.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Wikipedia, a huge scale Web-based dictionary, is an impressive corpus for knowledge extraction. We already proved that Wikipedia can be used for constructing an English association thesaurus and our link structure mining method is significantly effective for this aim. However, we want to find out how we can apply this method to other languages and what the requirements, differences and characteristics are. Nowadays, Wikipedia supports more than 250 languages such as English, German, French, Polish and Japanese. Among Asian languages, the Japanese Wikipedia is the largest corpus in Wikipedia. In this research, therefore, we analyzed all Japanese articles in Wikipedia and constructed a huge scale Japanese association thesaurus. After constructing the thesaurus, we realized that it shows several impressive characteristics depending on language and culture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维基百科挖掘大规模日本协会词库建设
维基百科,一个庞大的基于网络的词典,是一个令人印象深刻的知识提取语料库。我们已经证明了维基百科可以用来构建英语关联词库,我们的链接结构挖掘方法在这方面是非常有效的。然而,我们想知道如何将这种方法应用到其他语言中,以及这些语言的需求、差异和特点是什么。如今,维基百科支持英语、德语、法语、波兰语和日语等250多种语言。在亚洲语言中,日语维基百科是维基百科中最大的语料库。因此,在本研究中,我们分析了维基百科中所有的日语文章,并构建了一个庞大的日语关联词库。在构建同义词库之后,我们意识到它根据语言和文化表现出几个令人印象深刻的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Metadata Generation and its Application to Biological Association Extraction Towards a Usenet-Like Discussion System for Users of Disconnected MANETs A New Centroid-Based Classifier for Text Categorization Explaining Answers from Agent Communication of Semantic Web Information Parallel Computing of CG Using an Open Source Windows Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1