{"title":"A novel lattice reduction aided linear precoding Scheme","authors":"Wei Zhang, Xiaoli Ma","doi":"10.1109/CISS.2009.5054775","DOIUrl":null,"url":null,"abstract":"To cope with the deleterious channel fading effects on the system performance, diversity-enriched transmitters and receivers have well-appreciated merits. When the channel state information is available at the transmitter, precoders are designed to suppress the channel effect and enable the diversity and low-complexity receiver designs. In addition, the peak-to-average power ratio (PAR) issue has to be considered from the energy perspective. In this paper, after reviewing existing precoding designs by providing the diversity and PAR results, we present a low-complexity transceiver design with a geometric mean decomposition based precoder at the transmitter and a novel lattice reduction aided equalizer at the receiver. The performance is analyzed in terms of diversity and the PAR. The theoretical analysis is corroborated by computer simulations.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To cope with the deleterious channel fading effects on the system performance, diversity-enriched transmitters and receivers have well-appreciated merits. When the channel state information is available at the transmitter, precoders are designed to suppress the channel effect and enable the diversity and low-complexity receiver designs. In addition, the peak-to-average power ratio (PAR) issue has to be considered from the energy perspective. In this paper, after reviewing existing precoding designs by providing the diversity and PAR results, we present a low-complexity transceiver design with a geometric mean decomposition based precoder at the transmitter and a novel lattice reduction aided equalizer at the receiver. The performance is analyzed in terms of diversity and the PAR. The theoretical analysis is corroborated by computer simulations.