An empirical study on keyword-based Web site clustering

F. Ricca, P. Tonella, Christian Girardi, E. Pianta
{"title":"An empirical study on keyword-based Web site clustering","authors":"F. Ricca, P. Tonella, Christian Girardi, E. Pianta","doi":"10.1109/WPC.2004.1311062","DOIUrl":null,"url":null,"abstract":"Web site evolution is characterized by a limited support to the understanding activities offered to the developers. In fact, design diagrams are often missing or outdated. A potentially interesting option is to reverse engineer high level views of Web sites from the content of the Web pages. Clustering is a valuable technique that can be used in this respect. Web pages can be clustered together based on the similarity of summary information about their content, represented as a list of automatically extracted keywords. This work presents an empirical study that was conducted to determine the meaningfulness for Web developers of clusters automatically produced from the analysis of the Web page content. Natural language processing (NLP) plays a central role in content analysis and keyword extraction. Thus, a second objective of the study was to assess the contribution of some shallow NLP techniques to the clustering task.","PeriodicalId":164866,"journal":{"name":"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPC.2004.1311062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Web site evolution is characterized by a limited support to the understanding activities offered to the developers. In fact, design diagrams are often missing or outdated. A potentially interesting option is to reverse engineer high level views of Web sites from the content of the Web pages. Clustering is a valuable technique that can be used in this respect. Web pages can be clustered together based on the similarity of summary information about their content, represented as a list of automatically extracted keywords. This work presents an empirical study that was conducted to determine the meaningfulness for Web developers of clusters automatically produced from the analysis of the Web page content. Natural language processing (NLP) plays a central role in content analysis and keyword extraction. Thus, a second objective of the study was to assess the contribution of some shallow NLP techniques to the clustering task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关键词的网站聚类的实证研究
网站发展的特点是对提供给开发人员的理解活动提供有限的支持。事实上,设计图经常丢失或过时。一个潜在的有趣的选择是从Web页面的内容对Web站点的高级视图进行反向工程。在这方面,聚类是一种很有价值的技术。Web页面可以根据其内容的摘要信息的相似性聚在一起,表示为自动提取的关键字列表。这项工作提出了一项实证研究,旨在确定从Web页面内容分析自动生成的集群对Web开发人员的意义。自然语言处理(NLP)在内容分析和关键词提取中起着核心作用。因此,本研究的第二个目标是评估一些浅层自然语言处理技术对聚类任务的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical assessment of UML static object diagrams Program comprehension for Web services An empirical study on using stereotypes to improve understanding of UML models Program comprehension in generative programming: a history of grand challenges Structural evolution of an open source system: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1