{"title":"Optimizing the administrated light dose during 5-ALA-mediated photodynamic therapy: Murine 4T1 breast cancer model.","authors":"Hossein Amiri, Manijhe Mokhtari-Dizaji, Hossein Mozdarani","doi":"10.1111/phpp.12925","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is already used to treat many cancers, including breast cancer, the most common cancer in women worldwide. The destruction basis of this method is on produced singlet oxygen which is extremely reactive and is a major agent of tumor cell killing. The measurement of singlet oxygen produced within PDT is essential in predicting treatment outcomes and their optimization. This study aims to determine the optimal total light dose administered during PDT by calculating the singlet oxygen to facilitate the prediction of the treatment outcome in mice bearing 4T1 cell breast cancer. Monitoring the changes in photosensitizer fluorescence signals during PDT due to photobleaching can be one of the methods of determination of singlet oxygen generation in the PDT process. This study determined the oxygen singlet as a photodynamic dose from the three-dimensional Monte Carlo method and the photobleaching empirical dose constant. The photobleaching dose constant was established non-invasively by monitoring the in vivo protoporphyrin IX (PpIX) fluorescence and photobleaching during PDT. The photobleaching dose constant (β) in J/cm<sup>2</sup> was calculated using empirical fluorescence data. The in vivo photobleaching dose constant of aminolevulinic acid was found to be 11.6 J/cm<sup>2</sup> and based on this value, the optimal treatment light dose was estimated at 120 J/cm<sup>2</sup> in mice bearing 4T1 breast cancer. It is concluded that information can be obtained regarding optimal treatment parameters by monitoring the in vivo PpIX fluorescence and photobleaching during PDT.</p>","PeriodicalId":20123,"journal":{"name":"Photodermatology, photoimmunology & photomedicine","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photodermatology, photoimmunology & photomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/phpp.12925","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) is already used to treat many cancers, including breast cancer, the most common cancer in women worldwide. The destruction basis of this method is on produced singlet oxygen which is extremely reactive and is a major agent of tumor cell killing. The measurement of singlet oxygen produced within PDT is essential in predicting treatment outcomes and their optimization. This study aims to determine the optimal total light dose administered during PDT by calculating the singlet oxygen to facilitate the prediction of the treatment outcome in mice bearing 4T1 cell breast cancer. Monitoring the changes in photosensitizer fluorescence signals during PDT due to photobleaching can be one of the methods of determination of singlet oxygen generation in the PDT process. This study determined the oxygen singlet as a photodynamic dose from the three-dimensional Monte Carlo method and the photobleaching empirical dose constant. The photobleaching dose constant was established non-invasively by monitoring the in vivo protoporphyrin IX (PpIX) fluorescence and photobleaching during PDT. The photobleaching dose constant (β) in J/cm2 was calculated using empirical fluorescence data. The in vivo photobleaching dose constant of aminolevulinic acid was found to be 11.6 J/cm2 and based on this value, the optimal treatment light dose was estimated at 120 J/cm2 in mice bearing 4T1 breast cancer. It is concluded that information can be obtained regarding optimal treatment parameters by monitoring the in vivo PpIX fluorescence and photobleaching during PDT.
期刊介绍:
The journal is a forum for new information about the direct and distant effects of electromagnetic radiation (ultraviolet, visible and infrared) mediated through skin. The divisions of the editorial board reflect areas of specific interest: aging, carcinogenesis, immunology, instrumentation and optics, lasers, photodynamic therapy, photosensitivity, pigmentation and therapy. Photodermatology, Photoimmunology & Photomedicine includes original articles, reviews, communications and editorials.
Original articles may include the investigation of experimental or pathological processes in humans or animals in vivo or the investigation of radiation effects in cells or tissues in vitro. Methodology need have no limitation; rather, it should be appropriate to the question addressed.