Transfer learning across datasets with different input dimensions: An algorithm and analysis for the linear regression case

Luis Pedro Silvestrin , Harry van Zanten , Mark Hoogendoorn , Ger Koole
{"title":"Transfer learning across datasets with different input dimensions: An algorithm and analysis for the linear regression case","authors":"Luis Pedro Silvestrin ,&nbsp;Harry van Zanten ,&nbsp;Mark Hoogendoorn ,&nbsp;Ger Koole","doi":"10.1016/j.jcmds.2023.100086","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of new sensors and monitoring devices, more sources of data become available to be used as inputs for machine learning models. These can on the one hand help to improve the accuracy of a model. On the other hand, combining these new inputs with historical data remains a challenge that has not yet been studied in enough detail. In this work, we propose a transfer learning algorithm that combines new and historical data with different input dimensions. This approach is easy to implement, efficient, with computational complexity equivalent to the ordinary least-squares method, and requires no hyperparameter tuning, making it straightforward to apply when the new data is limited. Different from other approaches, we provide a rigorous theoretical study of its robustness, showing that it cannot be outperformed by a baseline that utilizes only the new data. Our approach achieves state-of-the-art performance on 9 real-life datasets, outperforming the linear DSFT, another linear transfer learning algorithm, and performing comparably to non-linear DSFT.<span><sup>1</sup></span></p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"9 ","pages":"Article 100086"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415823000135/pdfft?md5=8c5d403909a1ea698959ce44c171ed61&pid=1-s2.0-S2772415823000135-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415823000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of new sensors and monitoring devices, more sources of data become available to be used as inputs for machine learning models. These can on the one hand help to improve the accuracy of a model. On the other hand, combining these new inputs with historical data remains a challenge that has not yet been studied in enough detail. In this work, we propose a transfer learning algorithm that combines new and historical data with different input dimensions. This approach is easy to implement, efficient, with computational complexity equivalent to the ordinary least-squares method, and requires no hyperparameter tuning, making it straightforward to apply when the new data is limited. Different from other approaches, we provide a rigorous theoretical study of its robustness, showing that it cannot be outperformed by a baseline that utilizes only the new data. Our approach achieves state-of-the-art performance on 9 real-life datasets, outperforming the linear DSFT, another linear transfer learning algorithm, and performing comparably to non-linear DSFT.1

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨不同输入维度数据集的迁移学习:线性回归案例的算法和分析
随着新型传感器和监测设备的发展,越来越多的数据来源可以用作机器学习模型的输入。这些一方面可以帮助提高模型的准确性。另一方面,将这些新的输入与历史数据相结合仍然是一个挑战,尚未得到足够详细的研究。在这项工作中,我们提出了一种迁移学习算法,该算法结合了不同输入维度的新数据和历史数据。这种方法易于实现,效率高,计算复杂度相当于普通的最小二乘法,并且不需要超参数调优,使得在新数据有限的情况下可以直接应用。与其他方法不同,我们对其稳健性进行了严格的理论研究,表明仅利用新数据的基线不能超越它。我们的方法在9个真实数据集上实现了最先进的性能,优于线性DSFT(另一种线性迁移学习算法),并且与非线性DSFT相媲美
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1