{"title":"Effect of Silicon Carbide Content on Bulk Electrical Resistance of Free-Sintered AlN–SiC Composites","authors":"V. I. Chasnyk, D. V. Chasnyk, O. M. Kaidash","doi":"10.3103/S1063457623050040","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>It is reported that the bulk electrical resistance of AlN–SiC composites decreases from 1.1 × 10<sup>8</sup> до 3.0 × 10<sup>2</sup> Ω cm when the content of silicon carbide increases from 20 to 55 wt %. In such composites, with a SiC content less than 50%, the porosity does not exceed 3% and, therefore, does not have a significant effect on the value of electrical resistance. The detected dependence of the electrical resistance on the SiC content has the form of a straight line inclined to the abscissa axis, if the resistance values are given on a logarithmic scale.</p></div></div>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"45 5","pages":"402 - 404"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457623050040","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract—
It is reported that the bulk electrical resistance of AlN–SiC composites decreases from 1.1 × 108 до 3.0 × 102 Ω cm when the content of silicon carbide increases from 20 to 55 wt %. In such composites, with a SiC content less than 50%, the porosity does not exceed 3% and, therefore, does not have a significant effect on the value of electrical resistance. The detected dependence of the electrical resistance on the SiC content has the form of a straight line inclined to the abscissa axis, if the resistance values are given on a logarithmic scale.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.