Multiscale modeling of lubrication flows under rarefied gas conditions

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Microfluidics and Nanofluidics Pub Date : 2023-09-21 DOI:10.1007/s10404-023-02682-z
Giorgos Tatsios, Livio Gibelli, Duncan A. Lockerby, Matthew K. Borg
{"title":"Multiscale modeling of lubrication flows under rarefied gas conditions","authors":"Giorgos Tatsios,&nbsp;Livio Gibelli,&nbsp;Duncan A. Lockerby,&nbsp;Matthew K. Borg","doi":"10.1007/s10404-023-02682-z","DOIUrl":null,"url":null,"abstract":"<div><p>We present a multiscale method for simulating non-equilibrium lubrication flows. The effect of low pressure or tiny lubricating geometries that gives rise to rarefied gas effects means that standard Navier–Stokes solutions are invalid, while the large lateral size of the systems that need to be investigated is computationally prohibitive for Boltzmann solutions, such as the direct simulation Monte Carlo method (DSMC). The multiscale method we propose is applicable to time-varying, low-speed, rarefied gas flows in quasi-3D geometries that are now becoming important in various applications, such as next-generation microprocessor chip manufacturing, aerospace, sealing technologies and MEMS devices. Our multiscale simulation method provides accurate solutions, with errors of less than 1% compared to the DSMC benchmark results when all modeling conditions are met. It also shows computational gains over DSMC that increase when the lateral size of the systems increases, reaching 2–3 orders of magnitude even for relatively small systems, making it an effective tool for simulation-based design.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02682-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-023-02682-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

We present a multiscale method for simulating non-equilibrium lubrication flows. The effect of low pressure or tiny lubricating geometries that gives rise to rarefied gas effects means that standard Navier–Stokes solutions are invalid, while the large lateral size of the systems that need to be investigated is computationally prohibitive for Boltzmann solutions, such as the direct simulation Monte Carlo method (DSMC). The multiscale method we propose is applicable to time-varying, low-speed, rarefied gas flows in quasi-3D geometries that are now becoming important in various applications, such as next-generation microprocessor chip manufacturing, aerospace, sealing technologies and MEMS devices. Our multiscale simulation method provides accurate solutions, with errors of less than 1% compared to the DSMC benchmark results when all modeling conditions are met. It also shows computational gains over DSMC that increase when the lateral size of the systems increases, reaching 2–3 orders of magnitude even for relatively small systems, making it an effective tool for simulation-based design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀薄气体条件下润滑流动的多尺度建模
提出了一种模拟非平衡润滑流动的多尺度方法。低压或微小的润滑几何形状会产生稀薄的气体效应,这意味着标准的Navier-Stokes解是无效的,而需要研究的系统的大横向尺寸在计算上是禁止Boltzmann解的,例如直接模拟蒙特卡罗方法(DSMC)。我们提出的多尺度方法适用于准3d几何形状的时变,低速,稀薄气体流动,这些气体流动现在在各种应用中变得越来越重要,例如下一代微处理器芯片制造,航空航天,密封技术和MEMS器件。我们的多尺度模拟方法提供了精确的解决方案,在满足所有建模条件的情况下,与DSMC基准结果相比,误差小于1%。它还显示,当系统的横向尺寸增加时,相对于DSMC的计算增益也会增加,即使对于相对较小的系统,也能达到2-3个数量级,使其成为基于仿真的设计的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
期刊最新文献
Visualizing conformance control mechanisms in high-temperature reservoirs: a microfluidic analysis of Pickering emulsified gel systems Exploring fluid flow in microchannels with branching and variable constrictions Variance-reduction kinetic simulation for characterization of surface and corner effects in low-speed rarefied gas flows through long micro-ducts Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation Physiological hypoxia promotes cancer cell migration and attenuates angiogenesis in co-culture using a microfluidic device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1