Theoretical Investigation on Thermal, Mechanical and Ultrasonic Properties of Zirconium Metal with Pressure

IF 0.9 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Solid State Pub Date : 2023-09-26 DOI:10.15330/pcss.24.3.549-557
P. Srivastav, A.K. Prajapati, P.K. Yadawa
{"title":"Theoretical Investigation on Thermal, Mechanical and Ultrasonic Properties of Zirconium Metal with Pressure","authors":"P. Srivastav, A.K. Prajapati, P.K. Yadawa","doi":"10.15330/pcss.24.3.549-557","DOIUrl":null,"url":null,"abstract":"Zirconium (Zr), a metal with an hcp structure, has been investigated for the transmission of acoustic wave in the 0 to 25 GPa operating pressure. For this, the Lennard-Jones interaction potential approach has been used to estimate the higher order elastic coefficients (SOECs and TOECs). This model is used to calculate the 2nd and 3rd order elastic parameters for zirconium metal. With the help of SOECs, other elastic moduli such as bulk modulus (B), Young’s modulus (Y) and shear modulus (G) have been calculated for Zr metal using Voigt-Reuss-Hill (VRH) approximations. Later, applying SOECs as well as zirconium density under the same pressure range, three orientation dependent acoustic velocities, comprising Debye average velocities, have been studied. Basic thermal characteristics such as specific heat at constant volume, thermal conductivity associated with lattice, thermal energy density, thermal relaxation time as well as acoustic coupling coefficients of zirconium metal have been also calculated at same pressure range. The computation is also satisfactory in estimating the ultrasonic attenuation coefficients, arises due to the interaction of phonons, hardness as well as melting temperature under various pressures in this research work.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"51 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.3.549-557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconium (Zr), a metal with an hcp structure, has been investigated for the transmission of acoustic wave in the 0 to 25 GPa operating pressure. For this, the Lennard-Jones interaction potential approach has been used to estimate the higher order elastic coefficients (SOECs and TOECs). This model is used to calculate the 2nd and 3rd order elastic parameters for zirconium metal. With the help of SOECs, other elastic moduli such as bulk modulus (B), Young’s modulus (Y) and shear modulus (G) have been calculated for Zr metal using Voigt-Reuss-Hill (VRH) approximations. Later, applying SOECs as well as zirconium density under the same pressure range, three orientation dependent acoustic velocities, comprising Debye average velocities, have been studied. Basic thermal characteristics such as specific heat at constant volume, thermal conductivity associated with lattice, thermal energy density, thermal relaxation time as well as acoustic coupling coefficients of zirconium metal have been also calculated at same pressure range. The computation is also satisfactory in estimating the ultrasonic attenuation coefficients, arises due to the interaction of phonons, hardness as well as melting temperature under various pressures in this research work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压力作用下金属锆热、力学和超声性能的理论研究
研究了具有hcp结构的金属锆(Zr)在0 ~ 25gpa工作压力下的声波传输特性。为此,采用Lennard-Jones相互作用势方法来估计高阶弹性系数(soec和toec)。该模型用于计算金属锆的二阶和三阶弹性参数。在SOECs的帮助下,使用Voigt-Reuss-Hill (VRH)近似计算了Zr金属的其他弹性模量,如体积模量(B)、杨氏模量(Y)和剪切模量(G)。随后,应用SOECs和相同压力范围下的锆密度,研究了三个方向相关的声速,包括德拜平均速度。在相同的压力范围内,计算了金属锆的基本热特性,如定容比热、与晶格相关的导热系数、热能密度、热松弛时间以及声耦合系数。在不同压力下声子、硬度和熔化温度相互作用引起的超声衰减系数的计算也令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
14.30%
发文量
83
期刊最新文献
Study of the short-range order of Co-W alloys electrodeposited using pulse current Effect of Mn2+ substitution on catalytic properties of Fe3-xMnxO4 nanoparticles synthesized via co-precipitation method Hardware and software for automated examination of defects of hard tissues of teeth after endodontic intervention for fatigue and destruction Modeling of orthosilicate and methanesulfonic acid clusters in aqueous solution Geometric phase for investigation of nanostructures in approaches of polarization-sensitive optical coherence tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1