{"title":"Performance of Concrete Containing Partial Granite and Tiling Wastes as Fine Aggregate","authors":"Leila Kherraf, Sihem Kherraf, Houria Hebhoub, Mouloud Belachia","doi":"10.59440/ceer/172751","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to study the properties of different compositions of concrete made by substituting sand made of crushed limestone, which is over-exploited in Algeria, by two types of sands produced by the recycling of double-layer tiling and granite waste, respectively, with different mass percentages of 0, 10, 20 and 30%. The physical, mechanical and some aspects of the durability properties of six concretes were evaluated and compared to those of a reference concrete. The results obtained show that the incorporation of granite sand up to a rate of 20% improves the compressive strength and the resistance to acid CH3COOH. For concretes made with tiling sand, the best compressive strength was observed in concrete with an addition rate of 10%. Furthermore, good tensile strength by splitting is obtained with rates of up to 30% of the two recycled sands.","PeriodicalId":54121,"journal":{"name":"Civil and Environmental Engineering Reports","volume":"4 3","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59440/ceer/172751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this paper is to study the properties of different compositions of concrete made by substituting sand made of crushed limestone, which is over-exploited in Algeria, by two types of sands produced by the recycling of double-layer tiling and granite waste, respectively, with different mass percentages of 0, 10, 20 and 30%. The physical, mechanical and some aspects of the durability properties of six concretes were evaluated and compared to those of a reference concrete. The results obtained show that the incorporation of granite sand up to a rate of 20% improves the compressive strength and the resistance to acid CH3COOH. For concretes made with tiling sand, the best compressive strength was observed in concrete with an addition rate of 10%. Furthermore, good tensile strength by splitting is obtained with rates of up to 30% of the two recycled sands.