Bingchu Li, Jiahao Shi, Shuangyuan Wang, Chengliang Liu
{"title":"Investigation of transmission characteristic for harmonic magnetic gears considering dynamic eccentricity using magnetic equivalent circuit","authors":"Bingchu Li, Jiahao Shi, Shuangyuan Wang, Chengliang Liu","doi":"10.1049/elp2.12383","DOIUrl":null,"url":null,"abstract":"<p>Harmonic magnetic gears (HMGs) have the advantage of lubrication-free, high speed ratio and high torque density, which make it an attractive solution for safety critical applications. Due to eccentricity caused by machining and assembly, HMG suffers from dynamic eccentricity (DE) in operation, however, its effect on HMG performance is still unknown. Transmission characteristic of HMG under DE is studied. First, a magnetic equivalent circuit (MEC) model of HMG is proposed to build the magnetic coupling torque analytically, and the geometry of air gap is analysed parametrically to derive its equivalent reluctances. Flux density and coupling torque can be acquired by solving MEC equations. The accuracy of the MEC model is verified by finite element method. To study the transmission characteristic, an electromechanical coupling simulation framework for HMG is constructed, motion trajectories of rotors are investigated in case of DE, the output torque in locked-rotor condition and speed response in continuous operation can be derived by simulation. It is found that torque ripples that have the same frequency with input rotor are induced by DE; the results are then verified in the experiment. This paper provides a theoretical guidance for the design and condition monitoring of HMG.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12383","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Harmonic magnetic gears (HMGs) have the advantage of lubrication-free, high speed ratio and high torque density, which make it an attractive solution for safety critical applications. Due to eccentricity caused by machining and assembly, HMG suffers from dynamic eccentricity (DE) in operation, however, its effect on HMG performance is still unknown. Transmission characteristic of HMG under DE is studied. First, a magnetic equivalent circuit (MEC) model of HMG is proposed to build the magnetic coupling torque analytically, and the geometry of air gap is analysed parametrically to derive its equivalent reluctances. Flux density and coupling torque can be acquired by solving MEC equations. The accuracy of the MEC model is verified by finite element method. To study the transmission characteristic, an electromechanical coupling simulation framework for HMG is constructed, motion trajectories of rotors are investigated in case of DE, the output torque in locked-rotor condition and speed response in continuous operation can be derived by simulation. It is found that torque ripples that have the same frequency with input rotor are induced by DE; the results are then verified in the experiment. This paper provides a theoretical guidance for the design and condition monitoring of HMG.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.