Pd-Nanoparticle-Decorated Multilayered MoS2 Sheets for Highly Sensitive Hydrogen Sensing

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2023-10-26 DOI:10.3390/chemosensors11110550
Shuja Bashir Malik, Fatima Ezahra Annanouch, Eduard Llobet
{"title":"Pd-Nanoparticle-Decorated Multilayered MoS2 Sheets for Highly Sensitive Hydrogen Sensing","authors":"Shuja Bashir Malik, Fatima Ezahra Annanouch, Eduard Llobet","doi":"10.3390/chemosensors11110550","DOIUrl":null,"url":null,"abstract":"In this work, efficient hydrogen gas sensors based on multilayered p-type bare MoS2 and Pd-decorated MoS2 were fabricated. MoS2 was deposited onto alumina transducers using an airbrushing technique to be used as a sensing material. Aerosol-assisted chemical vapor deposition (AACVD) was used to decorate layered MoS2 with Pd nanoparticles at 250 °C. The bare and Pd-decorated MoS2 was characterized using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characterization results reveal the multilayered crystalline structure of MoS2 with successful Pd decoration. The size of the Pd nanoparticles ranges from 15 nm to 23 nm. Gas sensing studies reveal that a maximum response of 55% is achieved for Pd-decorated MoS2 operated at 150 °C to 100 ppm of H2, which is clearly below the explosive limit (4%) in air. The higher sensitivity due to Pd nanoparticle decoration was owed to a spillover effect. This study reveals that the sensitivity of the sensors is highly dependent on the amount of Pd decoration. Moreover, sensor responses increase slightly when exposed to 50% relative humidity (RH at 25 °C).","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11110550","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, efficient hydrogen gas sensors based on multilayered p-type bare MoS2 and Pd-decorated MoS2 were fabricated. MoS2 was deposited onto alumina transducers using an airbrushing technique to be used as a sensing material. Aerosol-assisted chemical vapor deposition (AACVD) was used to decorate layered MoS2 with Pd nanoparticles at 250 °C. The bare and Pd-decorated MoS2 was characterized using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characterization results reveal the multilayered crystalline structure of MoS2 with successful Pd decoration. The size of the Pd nanoparticles ranges from 15 nm to 23 nm. Gas sensing studies reveal that a maximum response of 55% is achieved for Pd-decorated MoS2 operated at 150 °C to 100 ppm of H2, which is clearly below the explosive limit (4%) in air. The higher sensitivity due to Pd nanoparticle decoration was owed to a spillover effect. This study reveals that the sensitivity of the sensors is highly dependent on the amount of Pd decoration. Moreover, sensor responses increase slightly when exposed to 50% relative humidity (RH at 25 °C).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高灵敏度氢传感的pd -纳米粒子修饰多层MoS2片
本文制备了基于多层p型裸MoS2和pd修饰MoS2的高效氢气传感器。利用喷枪技术将MoS2沉积在氧化铝换能器上作为传感材料。采用气溶胶辅助化学气相沉积(AACVD)技术,在250℃下用Pd纳米粒子修饰层状二硫化钼。利用场发射扫描电镜(FESEM)、高分辨率透射电镜(HR-TEM)、x射线衍射(XRD)和拉曼光谱对裸态和pd修饰的二硫化钼进行了表征。表征结果表明,经过Pd修饰的MoS2具有多层晶体结构。钯纳米粒子的尺寸在15 ~ 23纳米之间。气体传感研究表明,在150°C和100 ppm H2下,pd修饰的MoS2的最大响应率为55%,明显低于空气中的爆炸极限(4%)。钯纳米粒子修饰的高灵敏度是由于溢出效应。该研究表明,传感器的灵敏度高度依赖于Pd装饰量。此外,当暴露于50%的相对湿度(RH at 25°C)时,传感器响应略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
期刊最新文献
Controlled Insertion of Silver Nanoparticles in LbL Nanostructures: Fine-Tuning the Sensing Units of an Impedimetric E-Tongue The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review All-Solid-State Potentiometric Sensor Based on Graphene Oxide as Ion-to-Electron Transducer for Nitrate Detection in Water Samples Defect Engineering in Transition Metal Dichalcogenide-Based Gas Sensors Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1