Investigation of the Use of Evolutionary Algorithms for Modeling and Simulation of Bifacial Photovoltaic Modules

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY Inventions Pub Date : 2023-10-26 DOI:10.3390/inventions8060134
Gabriel Henrique Grala, Lucas Lima Provensi, Rafael Krummenauer, Oswaldo Curty da Motta Lima, Glaucio Pedro de Alcantara, Cid Marcos Gonçalves Andrade
{"title":"Investigation of the Use of Evolutionary Algorithms for Modeling and Simulation of Bifacial Photovoltaic Modules","authors":"Gabriel Henrique Grala, Lucas Lima Provensi, Rafael Krummenauer, Oswaldo Curty da Motta Lima, Glaucio Pedro de Alcantara, Cid Marcos Gonçalves Andrade","doi":"10.3390/inventions8060134","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to employ and improve evolutionary algorithms, namely the genetic algorithm (GA) and the differential evolution algorithm (DE), to extract the parameters of the equivalent circuit model (ECM) of a bifacial photovoltaic module using the representative model of a diode with five parameters (1D5P). The objective is to simulate the characteristics of the I–V curves for various irradiation and temperature scenarios. A distinctive feature of this study is the exclusive use of the information in the technical sheet of the bifacial module to conduct the entire extraction and simulation process, eliminating the need to resort to external sources of data or experimental data. To validate the methods, a comparison was made between the simulation results and the data provided by the bifacial module manufacturer, contemplating different scenarios of irradiation and temperature. The DE was the most accurate algorithm for the 1D5P model, which presented a maximum average error of 1.57%. In comparison, the GA presented a maximum average error of 1.98% in the most distant scenario of STC conditions. Despite the errors inherent to the simulations, none of the algorithms presented relative errors greater than 8%, which represents a satisfactory modeling for the different operational conditions of the bifacial photovoltaic modules.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions8060134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to employ and improve evolutionary algorithms, namely the genetic algorithm (GA) and the differential evolution algorithm (DE), to extract the parameters of the equivalent circuit model (ECM) of a bifacial photovoltaic module using the representative model of a diode with five parameters (1D5P). The objective is to simulate the characteristics of the I–V curves for various irradiation and temperature scenarios. A distinctive feature of this study is the exclusive use of the information in the technical sheet of the bifacial module to conduct the entire extraction and simulation process, eliminating the need to resort to external sources of data or experimental data. To validate the methods, a comparison was made between the simulation results and the data provided by the bifacial module manufacturer, contemplating different scenarios of irradiation and temperature. The DE was the most accurate algorithm for the 1D5P model, which presented a maximum average error of 1.57%. In comparison, the GA presented a maximum average error of 1.98% in the most distant scenario of STC conditions. Despite the errors inherent to the simulations, none of the algorithms presented relative errors greater than 8%, which represents a satisfactory modeling for the different operational conditions of the bifacial photovoltaic modules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化算法在双面光伏组件建模与仿真中的应用研究
本研究的目的是采用并改进进化算法,即遗传算法(GA)和差分进化算法(DE),以具有代表性的二极管五参数(1D5P)模型提取双面光伏组件等效电路模型(ECM)的参数。目的是模拟不同辐照和温度情景下的I-V曲线特征。本研究的一个显著特点是完全使用双面模块技术表中的信息进行整个提取和仿真过程,无需借助外部数据源或实验数据。为了验证这些方法,将模拟结果与双面模块制造商提供的数据进行了比较,考虑了不同的辐射和温度情况。对于1D5P模型,DE是最准确的算法,其最大平均误差为1.57%。相比之下,遗传算法在最遥远的STC条件下的最大平均误差为1.98%。尽管仿真存在固有误差,但所有算法的相对误差均不大于8%,这表明对双面光伏组件不同工作条件的建模令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
期刊最新文献
PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis Aircraft Innovation Trends Enabling Advanced Air Mobility The Effect of Individual Hydrocarbons in the Composition of Diesel Fuel on the Effectiveness of Depressant Additives A Review of Available Solutions for Implementation of Small–Medium Combined Heat and Power (CHP) Systems Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1