Study of violence against women and its characteristics through the application of text mining techniques

IF 3.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Data Science and Analytics Pub Date : 2023-09-14 DOI:10.1007/s41060-023-00448-y
E. M. A. Stephanie, L. G. B. Ruiz, M. A. Vila, M. C. Pegalajar
{"title":"Study of violence against women and its characteristics through the application of text mining techniques","authors":"E. M. A. Stephanie, L. G. B. Ruiz, M. A. Vila, M. C. Pegalajar","doi":"10.1007/s41060-023-00448-y","DOIUrl":null,"url":null,"abstract":"The Internet provides a wide variety of information that can be collected and studied, creating a massive data repository. Among the data available on the Internet, we can find articles about Violence against Women (VAW) published in the digital press, which are of great societal interest. In this work, we utilized Web scraping techniques to gather VAW-related news from the internet. Applying Text Mining techniques, we conducted a study on VAW and its characteristics. Our work comprises an exploratory analysis and the application of Topic Modelling to VAW events to identify latent topics and their semantic structures. We employed classification algorithms on a set of VAW press articles to determine the type of violence they refer to, namely physical, psychological, sexual, or a combination of them. We proposed two methodologies to target the data: the first one is based on dictionaries of VAW types, while the second approach extends the former by using the predominant violence to identify other associated types. Furthermore, we implemented two feature selection techniques: TF-IDF and $${Chi}^{2}$$ . Then, we applied Support Vector Machine, Decision Tree, Bayesian Networks, XGBoost Classifier, Random Forest, and Artificial Neural Networks. The results obtained showed that the classifiers achieved better performance when using $${Chi}^{2}$$ . The Boost Classifier demonstrated the best performance, followed by Random Forest.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"41 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Science and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41060-023-00448-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet provides a wide variety of information that can be collected and studied, creating a massive data repository. Among the data available on the Internet, we can find articles about Violence against Women (VAW) published in the digital press, which are of great societal interest. In this work, we utilized Web scraping techniques to gather VAW-related news from the internet. Applying Text Mining techniques, we conducted a study on VAW and its characteristics. Our work comprises an exploratory analysis and the application of Topic Modelling to VAW events to identify latent topics and their semantic structures. We employed classification algorithms on a set of VAW press articles to determine the type of violence they refer to, namely physical, psychological, sexual, or a combination of them. We proposed two methodologies to target the data: the first one is based on dictionaries of VAW types, while the second approach extends the former by using the predominant violence to identify other associated types. Furthermore, we implemented two feature selection techniques: TF-IDF and $${Chi}^{2}$$ . Then, we applied Support Vector Machine, Decision Tree, Bayesian Networks, XGBoost Classifier, Random Forest, and Artificial Neural Networks. The results obtained showed that the classifiers achieved better performance when using $${Chi}^{2}$$ . The Boost Classifier demonstrated the best performance, followed by Random Forest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过应用文本挖掘技术研究对妇女的暴力行为及其特征
Internet提供了可以收集和研究的各种各样的信息,从而创建了一个庞大的数据存储库。在互联网上可获得的数据中,我们可以找到在数字媒体上发表的关于暴力侵害妇女行为的文章,这些文章引起了社会的极大兴趣。在这项工作中,我们利用Web抓取技术从互联网上收集与vaw相关的新闻。应用文本挖掘技术,对VAW及其特征进行了研究。我们的工作包括探索性分析和主题建模对VAW事件的应用,以识别潜在主题及其语义结构。我们对一组VAW新闻文章使用分类算法来确定它们所指的暴力类型,即身体暴力、心理暴力、性暴力或它们的组合。我们提出了两种方法来定位数据:第一种方法基于VAW类型的字典,而第二种方法通过使用主要暴力来识别其他相关类型来扩展前者。此外,我们实现了两种特征选择技术:TF-IDF和$${Chi}^{2}$$。然后,我们应用了支持向量机、决策树、贝叶斯网络、XGBoost分类器、随机森林和人工神经网络。结果表明,当使用$${Chi}^{2}$$时,分类器获得了更好的性能。Boost分类器表现出最好的性能,其次是Random Forest。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
8.30%
发文量
72
期刊介绍: Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social sci­ence, and lifestyle. The field encompasses the larger ar­eas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new sci­entific chal­lenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and vis­ualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The jour­nal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applica­tions of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interopera­bility, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics
期刊最新文献
Discrete double factors of a family of odd Weibull-G distributions: features and modeling Artificial intelligence trend analysis in German business and politics: a web mining approach Speech-based detection of multi-class Alzheimer’s disease classification using machine learning Implementation of air pollution traceability method based on IF-GNN-FC model with multiple-source data Policies and metrics for schedulers in cloud data-centers using CloudSim simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1