{"title":"Estimation of Temperature-Dependent Thermal Conductivity and Heat Capacity Given Boundary Data","authors":"Abdulaziz Sharahy, Zaid Sawlan","doi":"10.3390/computation11090184","DOIUrl":null,"url":null,"abstract":"This work aims to estimate temperature-dependent thermal conductivity and heat capacity given measurements of temperature and heat flux at the boundaries. This estimation problem has many engineering and industrial applications, such as those for the building sector and chemical reactors. Two approaches are proposed to address this problem. The first method uses an integral approach and a polynomial approximation of the temperature profile. The second method uses a numerical solver for the nonlinear heat equation and an optimization algorithm. The performance of the two methods is compared using synthetic data generated with different boundary conditions and configurations. The results demonstrate that the integral approach works in limited scenarios, whereas the numerical approach is effective in estimating temperature-dependent thermal properties. The second method is also extended to account for noisy measurements and a comprehensive uncertainty quantification framework is developed.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"358 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11090184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to estimate temperature-dependent thermal conductivity and heat capacity given measurements of temperature and heat flux at the boundaries. This estimation problem has many engineering and industrial applications, such as those for the building sector and chemical reactors. Two approaches are proposed to address this problem. The first method uses an integral approach and a polynomial approximation of the temperature profile. The second method uses a numerical solver for the nonlinear heat equation and an optimization algorithm. The performance of the two methods is compared using synthetic data generated with different boundary conditions and configurations. The results demonstrate that the integral approach works in limited scenarios, whereas the numerical approach is effective in estimating temperature-dependent thermal properties. The second method is also extended to account for noisy measurements and a comprehensive uncertainty quantification framework is developed.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.