SSL4EO-S12: A large-scale multimodal, multitemporal dataset for self-supervised learning in Earth observation [Software and Data Sets]

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS IEEE Geoscience and Remote Sensing Magazine Pub Date : 2023-09-01 DOI:10.1109/mgrs.2023.3281651
Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, Conrad M. Albrecht, Xiao Xiang Zhu
{"title":"SSL4EO-S12: A large-scale multimodal, multitemporal dataset for self-supervised learning in Earth observation [Software and Data Sets]","authors":"Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, Conrad M. Albrecht, Xiao Xiang Zhu","doi":"10.1109/mgrs.2023.3281651","DOIUrl":null,"url":null,"abstract":"Self-supervised pretraining bears the potential to generate expressive representations from large-scale Earth observation (EO) data without human annotation. However, most existing pretraining in the field is based on ImageNet or medium-sized, labeled remote sensing (RS) datasets. In this article, we share an unlabeled dataset <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">Self-Supervised Learning for Earth Observation-Sentinel-1/2</i> ( <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">SSL4EO</i> - <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">S12</i> ) to assemble a large-scale, global, multimodal, and multiseasonal corpus of satellite imagery. We demonstrate SSL4EO-S12 to succeed in self-supervised pretraining for a set of representative methods: momentum contrast (MoCo), self-distillation with no labels (DINO), masked autoencoders (MAE), and data2vec, and multiple downstream applications, including scene classification, semantic segmentation, and change detection. Our benchmark results prove the effectiveness of SSL4EO-S12 compared to existing datasets. The dataset, related source code, and pretrained models are available at <uri xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">https://github.com/zhu-xlab/SSL4EO-S12</uri> .","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":16.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mgrs.2023.3281651","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supervised pretraining bears the potential to generate expressive representations from large-scale Earth observation (EO) data without human annotation. However, most existing pretraining in the field is based on ImageNet or medium-sized, labeled remote sensing (RS) datasets. In this article, we share an unlabeled dataset Self-Supervised Learning for Earth Observation-Sentinel-1/2 ( SSL4EO - S12 ) to assemble a large-scale, global, multimodal, and multiseasonal corpus of satellite imagery. We demonstrate SSL4EO-S12 to succeed in self-supervised pretraining for a set of representative methods: momentum contrast (MoCo), self-distillation with no labels (DINO), masked autoencoders (MAE), and data2vec, and multiple downstream applications, including scene classification, semantic segmentation, and change detection. Our benchmark results prove the effectiveness of SSL4EO-S12 compared to existing datasets. The dataset, related source code, and pretrained models are available at https://github.com/zhu-xlab/SSL4EO-S12 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SSL4EO-S12:用于地球观测中自监督学习的大规模多模态、多时间数据集[软件和数据集]
自监督预训练具有在没有人工注释的情况下从大规模地球观测(EO)数据生成表达性表示的潜力。然而,该领域现有的大多数预训练都是基于ImageNet或中型标记遥感(RS)数据集。在本文中,我们分享了一个用于地球观测的无标记数据集自监督学习- sentinel -1/2 (SSL4EO - S12),以组装大规模,全球,多模式和多季节的卫星图像语料库。我们展示了SSL4EO-S12在自监督预训练中取得成功的一组代表性方法:动量对比(MoCo)、无标签自蒸馏(DINO)、蒙面自动编码器(MAE)和data2vec,以及多个下游应用,包括场景分类、语义分割和变化检测。我们的基准测试结果证明了与现有数据集相比,SSL4EO-S12的有效性。数据集、相关源代码和预训练模型可在https://github.com/zhu-xlab/SSL4EO-S12上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
期刊最新文献
Spatiotemporal Big Data Empower Community Modeling, Monitoring, Evaluation, and Optimization for Sustainable Community Development: A review of challenges and opportunities Opening the Black Box: A systematic review on explainable artificial intelligence in remote sensing LuTan-1: An innovative L-band spaceborne bistatic interferometric synthetic aperture radar mission Better, Not Just More: Data-centric machine learning for Earth observation EarthNets: Empowering artificial intelligence for Earth observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1