Di Peng, Qiaoshi Zeng, Fujun Lan, Zhenfang Xing, Yang Ding, Ho-kwang Mao
{"title":"The near-room-temperature upsurge of electrical resistivity in Lu-H-N is not superconductivity, but a metal-to-poor-conductor transition","authors":"Di Peng, Qiaoshi Zeng, Fujun Lan, Zhenfang Xing, Yang Ding, Ho-kwang Mao","doi":"10.1063/5.0166430","DOIUrl":null,"url":null,"abstract":"The recent report of superconductivity in nitrogen-doped lutetium hydride (Lu-H-N) at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors. However, the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim. In this work, using a reliable experimental protocol, we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature. With quantitative comparison of the temperature-dependent resistance between Lu-H-N and the pure lutetium before reaction, we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity. Herein, we also briefly discuss other issues recently raised in relation to the Lu-H-N system.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"17 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0166430","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The recent report of superconductivity in nitrogen-doped lutetium hydride (Lu-H-N) at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors. However, the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim. In this work, using a reliable experimental protocol, we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature. With quantitative comparison of the temperature-dependent resistance between Lu-H-N and the pure lutetium before reaction, we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity. Herein, we also briefly discuss other issues recently raised in relation to the Lu-H-N system.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.