Characteristics of the Accelerated Electrons Moving along the Loop Derived from Cyclical Microwave Brightenings at the Footpoints

IF 8.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astrophysical Journal Letters Pub Date : 2023-10-01 DOI:10.3847/2041-8213/acf99c
Keitarou Matsumoto, Satoshi Masuda, Takafumi Kaneko
{"title":"Characteristics of the Accelerated Electrons Moving along the Loop Derived from Cyclical Microwave Brightenings at the Footpoints","authors":"Keitarou Matsumoto, Satoshi Masuda, Takafumi Kaneko","doi":"10.3847/2041-8213/acf99c","DOIUrl":null,"url":null,"abstract":"Many particles are accelerated during solar flares. To understand the acceleration and propagation processes of electrons, we require the pitch-angle distributions of the particles. The pitch angle of accelerated electrons has been estimated from the propagation velocity of a nonthermal microwave source archived in Nobeyama Radioheliograph data. We analyzed a flare event (an M-class flare on 2014 October 22) showing cyclical microwave brightenings at the two footpoint regions. Assuming that the brightenings were caused by the accelerated electrons, we approximated the velocity parallel to the magnetic field of the accelerated electrons as 77,000 and 90,000 km/s. The estimated pitch angle of the accelerated electrons is 69-80 degrees and the size of the loss cone at the footpoint (estimated from the magnetic field strength in the nonlinear force-free field model) is approximately 43 degrees. Most of the accelerated electrons could be reflected at the footpoint region. This feature can be interpreted as brightenings produced by bouncing motion of the accelerated electrons.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"124 1","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acf99c","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Many particles are accelerated during solar flares. To understand the acceleration and propagation processes of electrons, we require the pitch-angle distributions of the particles. The pitch angle of accelerated electrons has been estimated from the propagation velocity of a nonthermal microwave source archived in Nobeyama Radioheliograph data. We analyzed a flare event (an M-class flare on 2014 October 22) showing cyclical microwave brightenings at the two footpoint regions. Assuming that the brightenings were caused by the accelerated electrons, we approximated the velocity parallel to the magnetic field of the accelerated electrons as 77,000 and 90,000 km/s. The estimated pitch angle of the accelerated electrons is 69-80 degrees and the size of the loss cone at the footpoint (estimated from the magnetic field strength in the nonlinear force-free field model) is approximately 43 degrees. Most of the accelerated electrons could be reflected at the footpoint region. This feature can be interpreted as brightenings produced by bouncing motion of the accelerated electrons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由足点处的周期性微波增亮导出的沿环运动的加速电子的特性
许多粒子在太阳耀斑期间被加速。为了理解电子的加速和传播过程,我们需要粒子的俯仰角分布。利用野山放射线白日照相资料中记录的非热微波源的传播速度,估计了加速电子的俯仰角。我们分析了一个耀斑事件(2014年10月22日的m级耀斑),显示了两个足点区域的周期性微波增亮。假设这些光亮是由加速电子引起的,我们将平行于加速电子磁场的速度近似为77,000和90,000 km/s。估计加速电子的俯仰角为69-80度,损耗锥在脚点的大小(从非线性无力场模型中的磁场强度估计)约为43度。大部分的加速电子可以在脚点区域反射。这个特征可以解释为由加速电子的反弹运动产生的光亮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysical Journal Letters
Astrophysical Journal Letters ASTRONOMY & ASTROPHYSICS-
CiteScore
14.10
自引率
6.30%
发文量
513
审稿时长
2-3 weeks
期刊介绍: The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.
期刊最新文献
Irregular Proton Injection to High Energies at Interplanetary Shocks Betatron Acceleration of Suprathermal Electrons within a Small-scale Flux Rope in the Solar Wind Spatial Extent of Molecular Gas, Dust, and Stars in Massive Galaxies at z ∼ 2.2–2.5 Determined with ALMA and JWST A Formation Mechanism for “Wrong Way” Radio Relics Is the M81 Fast Radio Burst Host Globular Cluster Special?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1