{"title":"Robust Predictive Model for Different Cancers using Biomarker Proteins","authors":"Shruti Jain, Ayodeji Salau","doi":"10.2174/0115743624257352230920091046","DOIUrl":null,"url":null,"abstract":"Background: When analyzing multivariate data, it can be challenging to quantify and pinpoint relationships between a collection of consistent characteristics. Reliable computational prediction of cancer patient's response to treatment based on their clinical and molecular profiles is essential in this era of precision medicine. This is essential in helping doctors choose the least contaminated and most potent restorative therapies that are now available. Better patient monitoring and selection are now possible in clinical trials. Methods: This research proposes a novel robust model to aid in the diagnosis of various cancers induced by biomarker proteins (Protein Kinase B, MAPK, and mammalian Target of Rapamycin). Later, various medications (Perifosine, Wortmannin, and Rapamycin) were proposed to cure cancer. Various studies were carried out to obtain all of the results, which aid in the identification of various types of cancer. The drugs mentioned in this essay help to ward off cancer. Scaling and normalization were carried out using parallel coordinates plots and correlation tests, respectively. The boosted tree method and kNN with multiple distance approaches were also used to generate a solid model. The medical diagnosis system was enhanced by training the boosted tree technique to identify various tumors. A robust model was validated by predicting various values that were displayed against the observed value and agreed with the advised strategy to locate biomarkers to show the value of our method. Results: The results show that the predicted and observed values agree with each other, especially for MAPK pathways. The observed correlation coefficient (r2) is 0.9847 without intercept and 0.9849 with intercept. The precise computational prediction of the reaction of cancer patients to treatment based on the patient's clinical and molecular profiles is vital in the period of exactitude medicine. Conclusion: A robust model was validated by predicting the different values that were plotted with the observed value, which agrees with the results of the proposed technique to uncover biomarkers and shows the effectiveness of our technique.","PeriodicalId":10868,"journal":{"name":"Current Signal Transduction Therapy","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Signal Transduction Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115743624257352230920091046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: When analyzing multivariate data, it can be challenging to quantify and pinpoint relationships between a collection of consistent characteristics. Reliable computational prediction of cancer patient's response to treatment based on their clinical and molecular profiles is essential in this era of precision medicine. This is essential in helping doctors choose the least contaminated and most potent restorative therapies that are now available. Better patient monitoring and selection are now possible in clinical trials. Methods: This research proposes a novel robust model to aid in the diagnosis of various cancers induced by biomarker proteins (Protein Kinase B, MAPK, and mammalian Target of Rapamycin). Later, various medications (Perifosine, Wortmannin, and Rapamycin) were proposed to cure cancer. Various studies were carried out to obtain all of the results, which aid in the identification of various types of cancer. The drugs mentioned in this essay help to ward off cancer. Scaling and normalization were carried out using parallel coordinates plots and correlation tests, respectively. The boosted tree method and kNN with multiple distance approaches were also used to generate a solid model. The medical diagnosis system was enhanced by training the boosted tree technique to identify various tumors. A robust model was validated by predicting various values that were displayed against the observed value and agreed with the advised strategy to locate biomarkers to show the value of our method. Results: The results show that the predicted and observed values agree with each other, especially for MAPK pathways. The observed correlation coefficient (r2) is 0.9847 without intercept and 0.9849 with intercept. The precise computational prediction of the reaction of cancer patients to treatment based on the patient's clinical and molecular profiles is vital in the period of exactitude medicine. Conclusion: A robust model was validated by predicting the different values that were plotted with the observed value, which agrees with the results of the proposed technique to uncover biomarkers and shows the effectiveness of our technique.
期刊介绍:
In recent years a breakthrough has occurred in our understanding of the molecular pathomechanisms of human diseases whereby most of our diseases are related to intra and intercellular communication disorders. The concept of signal transduction therapy has got into the front line of modern drug research, and a multidisciplinary approach is being used to identify and treat signaling disorders.
The journal publishes timely in-depth reviews, research article and drug clinical trial studies in the field of signal transduction therapy. Thematic issues are also published to cover selected areas of signal transduction therapy. Coverage of the field includes genomics, proteomics, medicinal chemistry and the relevant diseases involved in signaling e.g. cancer, neurodegenerative and inflammatory diseases. Current Signal Transduction Therapy is an essential journal for all involved in drug design and discovery.