{"title":"Forced convective heat transfer in vegetation by measuring liquid water evaporation","authors":"Kunhyuk Sung, Eric Mueller, Anthony Hamins","doi":"10.1177/07349041231202987","DOIUrl":null,"url":null,"abstract":"A series of experiments was conducted to develop a method to estimate the convective heat transfer in vegetative fuels with a complex geometry through the measurement of liquid water evaporation. A water mist was sprayed onto vegetative test specimens, coating their entire surface with a thin water layer. The water evaporation rate was measured using a load cell in a wind tunnel under controlled conditions while an infrared camera tracked the surface temperatures. Convective heat transfer was calculated by the difference between the free stream and surface temperatures and the measured evaporation rate, considering the energy balance of the water layer at steady state. The method was verified through evaporation tests using a wood cylinder array. Experiments were conducted using nominally 30 cm branches of a typical conifer, Norway Spruce ( Picea abies), yielding the conventional form of the Nusselt number–Reynolds number power–law relationship: Nu=C Re n Pr 1/3 with coefficients C = 0.69 ± 0.25 and n = 0.34 ± 0.06.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07349041231202987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of experiments was conducted to develop a method to estimate the convective heat transfer in vegetative fuels with a complex geometry through the measurement of liquid water evaporation. A water mist was sprayed onto vegetative test specimens, coating their entire surface with a thin water layer. The water evaporation rate was measured using a load cell in a wind tunnel under controlled conditions while an infrared camera tracked the surface temperatures. Convective heat transfer was calculated by the difference between the free stream and surface temperatures and the measured evaporation rate, considering the energy balance of the water layer at steady state. The method was verified through evaporation tests using a wood cylinder array. Experiments were conducted using nominally 30 cm branches of a typical conifer, Norway Spruce ( Picea abies), yielding the conventional form of the Nusselt number–Reynolds number power–law relationship: Nu=C Re n Pr 1/3 with coefficients C = 0.69 ± 0.25 and n = 0.34 ± 0.06.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.