FEDRESOURCE

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-11-14 DOI:10.32985/ijeces.14.9.7
P. G. Satheesh, T. Sasikala
{"title":"FEDRESOURCE","authors":"P. G. Satheesh, T. Sasikala","doi":"10.32985/ijeces.14.9.7","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning can effectively deal with resource allocation (RA) in wireless networks. However, more complex networks can have slower learning speeds, and a lack of network adaptability requires new policies to be learned for newly introduced systems. To address these issues, a novel federated learning-based resource allocation (FEDRESOURCE) has been proposed in this paper which efficiently performs RA in wireless networks. The proposed FEDRESOURCE technique uses federated learning (FL) which is a ML technique that shares the DRL-based RA model between distributed systems and a cloud server to describe a policy. The regularized local loss that occurs in the network will be reduced by using a butterfly optimization technique, which increases the convergence of the FL algorithm. The suggested FL framework speeds up policy learning and allows for adoption by employing deep learning and the optimization technique. Experiments were conducted using a Python-based simulator and detailed numerical results for the wireless RA sub-problems. The theoretical results of the novel FEDRESOURCE algorithm have been validated in terms of transmission power, convergence of algorithm, throughput, and cost. The proposed FEDRESOURCE technique achieves maximum transmit power up to 27%, 55%, and 68% energy efficiency compared to Scheduling policy, Asynchronous FL framework, and Heterogeneous computation schemes respectively. The proposed FEDRESOURCE technique can increase discrimination accuracy by 1.7%, 1.2%, and 0.78% compared to the scheduling policy framework, Asynchronous FL framework, and Heterogeneous computation schemes respectively.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"40 4","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.9.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Deep reinforcement learning can effectively deal with resource allocation (RA) in wireless networks. However, more complex networks can have slower learning speeds, and a lack of network adaptability requires new policies to be learned for newly introduced systems. To address these issues, a novel federated learning-based resource allocation (FEDRESOURCE) has been proposed in this paper which efficiently performs RA in wireless networks. The proposed FEDRESOURCE technique uses federated learning (FL) which is a ML technique that shares the DRL-based RA model between distributed systems and a cloud server to describe a policy. The regularized local loss that occurs in the network will be reduced by using a butterfly optimization technique, which increases the convergence of the FL algorithm. The suggested FL framework speeds up policy learning and allows for adoption by employing deep learning and the optimization technique. Experiments were conducted using a Python-based simulator and detailed numerical results for the wireless RA sub-problems. The theoretical results of the novel FEDRESOURCE algorithm have been validated in terms of transmission power, convergence of algorithm, throughput, and cost. The proposed FEDRESOURCE technique achieves maximum transmit power up to 27%, 55%, and 68% energy efficiency compared to Scheduling policy, Asynchronous FL framework, and Heterogeneous computation schemes respectively. The proposed FEDRESOURCE technique can increase discrimination accuracy by 1.7%, 1.2%, and 0.78% compared to the scheduling policy framework, Asynchronous FL framework, and Heterogeneous computation schemes respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联邦资源
深度强化学习可以有效地处理无线网络中的资源分配问题。然而,更复杂的网络可能具有更慢的学习速度,并且缺乏网络适应性需要为新引入的系统学习新的策略。为了解决这些问题,本文提出了一种新的基于联邦学习的资源分配方法(FEDRESOURCE),可以有效地在无线网络中进行资源分配。提出的FEDRESOURCE技术使用联邦学习(FL),这是一种ML技术,它在分布式系统和云服务器之间共享基于drl的RA模型来描述策略。利用蝴蝶优化技术减少了网络中出现的正则化局部损失,提高了算法的收敛性。建议的FL框架加速了策略学习,并允许采用深度学习和优化技术。利用python仿真器对无线RA子问题进行了实验,并给出了详细的数值结果。从传输功率、算法收敛性、吞吐量和成本等方面验证了FEDRESOURCE算法的理论结果。与调度策略、异步FL框架和异构计算方案相比,提出的FEDRESOURCE技术实现了最大传输功率27%、55%和68%的能效。与调度策略框架、异步FL框架和异构计算方案相比,提出的FEDRESOURCE技术分别提高了1.7%、1.2%和0.78%的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1