{"title":"FEDRESOURCE","authors":"P. G. Satheesh, T. Sasikala","doi":"10.32985/ijeces.14.9.7","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning can effectively deal with resource allocation (RA) in wireless networks. However, more complex networks can have slower learning speeds, and a lack of network adaptability requires new policies to be learned for newly introduced systems. To address these issues, a novel federated learning-based resource allocation (FEDRESOURCE) has been proposed in this paper which efficiently performs RA in wireless networks. The proposed FEDRESOURCE technique uses federated learning (FL) which is a ML technique that shares the DRL-based RA model between distributed systems and a cloud server to describe a policy. The regularized local loss that occurs in the network will be reduced by using a butterfly optimization technique, which increases the convergence of the FL algorithm. The suggested FL framework speeds up policy learning and allows for adoption by employing deep learning and the optimization technique. Experiments were conducted using a Python-based simulator and detailed numerical results for the wireless RA sub-problems. The theoretical results of the novel FEDRESOURCE algorithm have been validated in terms of transmission power, convergence of algorithm, throughput, and cost. The proposed FEDRESOURCE technique achieves maximum transmit power up to 27%, 55%, and 68% energy efficiency compared to Scheduling policy, Asynchronous FL framework, and Heterogeneous computation schemes respectively. The proposed FEDRESOURCE technique can increase discrimination accuracy by 1.7%, 1.2%, and 0.78% compared to the scheduling policy framework, Asynchronous FL framework, and Heterogeneous computation schemes respectively.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"40 4","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.9.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep reinforcement learning can effectively deal with resource allocation (RA) in wireless networks. However, more complex networks can have slower learning speeds, and a lack of network adaptability requires new policies to be learned for newly introduced systems. To address these issues, a novel federated learning-based resource allocation (FEDRESOURCE) has been proposed in this paper which efficiently performs RA in wireless networks. The proposed FEDRESOURCE technique uses federated learning (FL) which is a ML technique that shares the DRL-based RA model between distributed systems and a cloud server to describe a policy. The regularized local loss that occurs in the network will be reduced by using a butterfly optimization technique, which increases the convergence of the FL algorithm. The suggested FL framework speeds up policy learning and allows for adoption by employing deep learning and the optimization technique. Experiments were conducted using a Python-based simulator and detailed numerical results for the wireless RA sub-problems. The theoretical results of the novel FEDRESOURCE algorithm have been validated in terms of transmission power, convergence of algorithm, throughput, and cost. The proposed FEDRESOURCE technique achieves maximum transmit power up to 27%, 55%, and 68% energy efficiency compared to Scheduling policy, Asynchronous FL framework, and Heterogeneous computation schemes respectively. The proposed FEDRESOURCE technique can increase discrimination accuracy by 1.7%, 1.2%, and 0.78% compared to the scheduling policy framework, Asynchronous FL framework, and Heterogeneous computation schemes respectively.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.