{"title":"Additive manufacturing of selected ecofriendly energy devices","authors":"Thywill Cephas Dzogbewu, Deon Johan de Beer","doi":"10.1080/17452759.2023.2276245","DOIUrl":null,"url":null,"abstract":"The burgeoning field of additive manufacturing (AM) applications has been extended to production of ecofriendly (green, clean, and renewable) energy generation and storage devices. Through a literature survey, the main energy generation and storage devices that produce little-to-no greenhouse gas emissions and their operational efficiency has been improved via AM manufacturing process were identified and discussed. The superiority of AM processes has led to the manufacturing of ecofriendly energy devices with geometrical precision and hierarchical porous interconnected structures that permit efficient diffusion of electrolytes and microbial population triggering ultrahigh rate operational performance which some have termed unprecedented. Despite the celebrated success demonstrated by the AM process, it is not in the mainstream of producing little-to-no emission energy devices due to the inherent limitations of the manufacturing process and the lack of industry-specific codes and standards to regulate AM-manufactured products. However, due to the automated nature of AM, it is expected that the current challenges inhibiting the adoption of AM into the main manufacturing stream will be addressed quickly by leveraging the synergy between artificial intelligence (AI) and AM for data collection and analysis.","PeriodicalId":23756,"journal":{"name":"Virtual and Physical Prototyping","volume":"9 25","pages":"0"},"PeriodicalIF":10.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual and Physical Prototyping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17452759.2023.2276245","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
The burgeoning field of additive manufacturing (AM) applications has been extended to production of ecofriendly (green, clean, and renewable) energy generation and storage devices. Through a literature survey, the main energy generation and storage devices that produce little-to-no greenhouse gas emissions and their operational efficiency has been improved via AM manufacturing process were identified and discussed. The superiority of AM processes has led to the manufacturing of ecofriendly energy devices with geometrical precision and hierarchical porous interconnected structures that permit efficient diffusion of electrolytes and microbial population triggering ultrahigh rate operational performance which some have termed unprecedented. Despite the celebrated success demonstrated by the AM process, it is not in the mainstream of producing little-to-no emission energy devices due to the inherent limitations of the manufacturing process and the lack of industry-specific codes and standards to regulate AM-manufactured products. However, due to the automated nature of AM, it is expected that the current challenges inhibiting the adoption of AM into the main manufacturing stream will be addressed quickly by leveraging the synergy between artificial intelligence (AI) and AM for data collection and analysis.
期刊介绍:
Virtual and Physical Prototyping (VPP) offers an international platform for professionals and academics to exchange innovative concepts and disseminate knowledge across the broad spectrum of virtual and rapid prototyping. The journal is exclusively online and encourages authors to submit supplementary materials such as data sets, color images, animations, and videos to enrich the content experience.
Scope:
The scope of VPP encompasses various facets of virtual and rapid prototyping.
All research articles published in VPP undergo a rigorous peer review process, which includes initial editor screening and anonymous refereeing by independent expert referees. This ensures the high quality and credibility of published work.