{"title":"Progress in surface modification preparation, interface characterization and properties of continuous carbon fiber reinforced polymer matrix composites","authors":"Yu Chen, Jian Mao, Bo Qian, Man Zhao","doi":"10.1080/09276440.2023.2279398","DOIUrl":null,"url":null,"abstract":"ABSTRACTAdditive manufacturing technology brings new revolutionary potential for the development of carbon fiber reinforced polymer composites. Continuous carbon fiber reinforced composites developed using fused deposition modeling technology have the characteristics of high specific strength, high specific modulus, light weight, and flexible design, which is the solution direction for low-cost, rapid, and flexible application of advanced composite materials in the future. In this paper, the preparation of continuous carbon fiber reinforced polymer composites with continuous carbon fibers as reinforcement and thermoplastic/thermoset as matrix, surface modification and their mechanical properties are investigated, the interfacial characteristics and properties of continuous carbon fiber reinforced polymer composites under different pretreatment processes, auxiliary processes and post-treatment processes are studied, and the connection between the micro-morphology and the mechanical properties of this composite is further analyzed. The direction of defect resolution of continuous carbon fiber reinforced polymer composites fabricated by fused deposition technology is provided, and the future development direction is envisioned.KEYWORDS: Continuous carbon fiber reinforced compositemolten depositionadvanced composite materialsinterface featuresmicrostructure morphological characteristics Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNational Key Research and Development Program (2018YFB, 1105301)","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"36 36","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2279398","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTAdditive manufacturing technology brings new revolutionary potential for the development of carbon fiber reinforced polymer composites. Continuous carbon fiber reinforced composites developed using fused deposition modeling technology have the characteristics of high specific strength, high specific modulus, light weight, and flexible design, which is the solution direction for low-cost, rapid, and flexible application of advanced composite materials in the future. In this paper, the preparation of continuous carbon fiber reinforced polymer composites with continuous carbon fibers as reinforcement and thermoplastic/thermoset as matrix, surface modification and their mechanical properties are investigated, the interfacial characteristics and properties of continuous carbon fiber reinforced polymer composites under different pretreatment processes, auxiliary processes and post-treatment processes are studied, and the connection between the micro-morphology and the mechanical properties of this composite is further analyzed. The direction of defect resolution of continuous carbon fiber reinforced polymer composites fabricated by fused deposition technology is provided, and the future development direction is envisioned.KEYWORDS: Continuous carbon fiber reinforced compositemolten depositionadvanced composite materialsinterface featuresmicrostructure morphological characteristics Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNational Key Research and Development Program (2018YFB, 1105301)
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields