Methodologies for Wind Field Reconstruction in the U-SPACE: A Review

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2023-11-14 DOI:10.3390/atmos14111684
Edoardo Bucchignani
{"title":"Methodologies for Wind Field Reconstruction in the U-SPACE: A Review","authors":"Edoardo Bucchignani","doi":"10.3390/atmos14111684","DOIUrl":null,"url":null,"abstract":"In the present work, the main methodologies used to reconstruct wind fields in the U-SPACE have been analyzed. The SESAR U-SPACE program aims to develop an Unmanned Traffic Management system with a progressive introduction of procedures and services designed to support secure access to the air space for a large number of drones. Some of these techniques were originally developed for reconstruction at high altitudes, but successively adapted to treat different heights. A common approach to all techniques is to approximate the probabilistic distribution of wind speed over time with some parametric models, apply spatial interpolation to the parameters and then read the predicted value. The approaches are based on the fact that modern aircraft are equipped with automatic systems. Moreover, the proposed concepts demonstrated the possibility of using drones as a large network to complement the current network of sensors. The methods can serve the micro-scale weather forecasts and the collection of information necessary for the definition of the flight plan of drones in urban contexts. Existing limitations in the applications of wind field reconstruction, related to the fact that estimations can be produced only if a sufficient number of drones are already flying, could be mitigated using data provided by Numerical Weather Prediction models (NWPs). The coupling of methodologies used to reconstruct wind fields with an NWP will ensure that estimations can be produced in any geographical area.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"10 3","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atmos14111684","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, the main methodologies used to reconstruct wind fields in the U-SPACE have been analyzed. The SESAR U-SPACE program aims to develop an Unmanned Traffic Management system with a progressive introduction of procedures and services designed to support secure access to the air space for a large number of drones. Some of these techniques were originally developed for reconstruction at high altitudes, but successively adapted to treat different heights. A common approach to all techniques is to approximate the probabilistic distribution of wind speed over time with some parametric models, apply spatial interpolation to the parameters and then read the predicted value. The approaches are based on the fact that modern aircraft are equipped with automatic systems. Moreover, the proposed concepts demonstrated the possibility of using drones as a large network to complement the current network of sensors. The methods can serve the micro-scale weather forecasts and the collection of information necessary for the definition of the flight plan of drones in urban contexts. Existing limitations in the applications of wind field reconstruction, related to the fact that estimations can be produced only if a sufficient number of drones are already flying, could be mitigated using data provided by Numerical Weather Prediction models (NWPs). The coupling of methodologies used to reconstruct wind fields with an NWP will ensure that estimations can be produced in any geographical area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
U-SPACE中风场重建方法综述
本文分析了U-SPACE中重建风场的主要方法。SESAR U-SPACE项目旨在开发一种无人驾驶交通管理系统,逐步引入程序和服务,旨在支持大量无人机安全进入空域。其中一些技术最初是为在高海拔地区重建而开发的,但后来逐渐适应了不同的高度。所有技术的通用方法是使用一些参数模型近似风速随时间的概率分布,对参数应用空间插值,然后读取预测值。这些方法是基于现代飞机配备了自动系统这一事实。此外,提出的概念展示了使用无人机作为一个大型网络来补充当前传感器网络的可能性。该方法可以服务于微尺度天气预报和收集城市环境下无人机飞行计划定义所需的信息。风场重建应用的现有限制,与只有在足够数量的无人机已经飞行的情况下才能产生估计有关,可以使用数值天气预报模型(NWPs)提供的数据来缓解。用于重建风场的方法与NWP的耦合将确保在任何地理区域都可以产生估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg Application of the Urban Climate Model PALM-4U to Investigate the Effects of the Diesel Traffic Ban on Air Quality in Stuttgart Particulate Matter in the American Southwest: Detection and Analysis of Dust Storms Using Surface Measurements and Ground-Based LIDAR Characteristics of Absorbing Aerosols in Mexico City: A Study of Morphology and Columnar Microphysical Properties The Drawback of Optimizing Air Cleaner Filters for the Adsorption of Formaldehyde
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1