Outbreak trends of fatality rate into coronavirus disease-2019 using deep learning

Robin Singh Bhadoria, Yash Gupta, Ivan Perl
{"title":"Outbreak trends of fatality rate into coronavirus disease-2019 using deep learning","authors":"Robin Singh Bhadoria, Yash Gupta, Ivan Perl","doi":"10.1504/ijmei.2023.127256","DOIUrl":null,"url":null,"abstract":"The World Health Organization (WHO) has declared the novel coronavirus as global pandemic on 11 March 2020. It was known to originate from Wuhan, China and its spread is unstoppable due to no proper medication and vaccine. The developed forecasting models predict the number of cases and its fatality rate for coronavirus disease 2019 (COVID-19), which is highly impulsive. This paper provides intrinsic algorithms namely - linear regression and long short-term memory (LSTM) using deep learning for time series-based prediction. It also uses the ReLU activation function and Adam optimiser. This paper also reports a comparative study on existing models for COVID-19 cases from different continents in the world. It also provides an extensive model that shows a brief prediction about the number of cases and time for recovered, active and deaths rate till January 2021.","PeriodicalId":39126,"journal":{"name":"International Journal of Medical Engineering and Informatics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmei.2023.127256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

The World Health Organization (WHO) has declared the novel coronavirus as global pandemic on 11 March 2020. It was known to originate from Wuhan, China and its spread is unstoppable due to no proper medication and vaccine. The developed forecasting models predict the number of cases and its fatality rate for coronavirus disease 2019 (COVID-19), which is highly impulsive. This paper provides intrinsic algorithms namely - linear regression and long short-term memory (LSTM) using deep learning for time series-based prediction. It also uses the ReLU activation function and Adam optimiser. This paper also reports a comparative study on existing models for COVID-19 cases from different continents in the world. It also provides an extensive model that shows a brief prediction about the number of cases and time for recovered, active and deaths rate till January 2021.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的2019冠状病毒病病死率爆发趋势
世界卫生组织(世卫组织)于2020年3月11日宣布新型冠状病毒为全球大流行。据悉,它起源于中国武汉,由于没有适当的药物和疫苗,它的传播无法阻挡。所开发的预测模型预测了新型冠状病毒病(COVID-19)的病例数和病死率,这是一种高度冲动性的疾病。本文提供了利用深度学习进行基于时间序列的预测的内在算法,即线性回归和长短期记忆(LSTM)。它还使用ReLU激活函数和Adam优化器。本文还对世界各大洲现有的COVID-19病例模型进行了比较研究。它还提供了一个广泛的模型,对2021年1月之前的病例数、康复时间、活跃时间和死亡率进行了简要预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
110
期刊介绍: IJMEI promotes an understanding of the structural/functional aspects of disease mechanisms and the application of technology towards the treatment/management of such diseases. It seeks to promote interdisciplinary collaboration between those interested in the theoretical and clinical aspects of medicine and to foster the application of computers and mathematics to problems arising from medical sciences. IJMEI includes authoritative review papers, the reporting of original research, and evaluation reports of new/existing techniques and devices. Each issue also contains a comprehensive information service. Topics covered include Hospital information/medical record systems, data protection/privacy Disease modelling/analysis, evidence-based clinical modelling/studies Computer-based patient/disease management systems Clinical trials/studies, outcome-based studies/analysis Electronic patient monitoring systems Nanotechnology in medicine, medical applications Tissue engineering, artificial organs, biomaterials design Healthcare standards, service standardisation Controlled medical terminology/vocabularies Nursing informatics, systems integration Healthcare/hospital management, economics Medical technology, intelligent instrumentation, telemedicine Medical/molecular imaging, disease management Bioinformatics, human genome studies/analysis Drug design.
期刊最新文献
ПЕРЕБІГ ВАГІТНОСТІ, ПОЛОГІВ, МОРФОЛОГІЧНІ ТА ІМУНОГІСТОХІМІЧНІ ОСОБЛИВОСТІ ПЛАЦЕНТИ У ВАГІТНИХ З КОРОНАВІРУСНОЮ ХВОРОБОЮ COVID-19 АВТОПСІЙНЕ ДОСЛІДЖЕННЯ: 125–РІЧНИЙ ДОСВІД РОБОТИ КАФЕДРИ ПАТОЛОГІЧНОЇ АНАТОМІЇ ЛЬВІВСЬКОГО НАЦІОНАЛЬНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ ІМЕНІ ДАНИЛА ГАЛИЦЬКОГО ЗМІНИ СЛИЗОВОГО БАР'ЄРУ У ПАЦІЄНТІВ ІЗ СИНДРОМОМ ПОДРАЗНЕНОГО КИШЕЧНИКА ПАТОМОРФОЛОГІЧНА ХАРАКТЕРИСТИКА КРИПТОКОКОЗУ ЛЕГЕНЬ ТА НИРОК ПРИ ВІЛ-ІНФЕКЦІЇ/СНІД ДИСТАНЦІЙНА ОСВІТА НА ПІСЛЯДИПЛОМНОМУ ЕТАПІ НАВЧАННЯ ЛІКАРІВ: ПРОБЛЕМНІ ПИТАННЯ ТА ЇХ ВИРІШЕННЯ НА СУЧАСНОМУ ЕТАПІ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1