Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler
{"title":"On the Diophantine equation 𝑈_{𝑛}-𝑏^{𝑚}=𝑐","authors":"Sebastian Heintze, Robert Tichy, Ingrid Vukusic, Volker Ziegler","doi":"10.1090/mcom/3854","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper U Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(U_n)_{n\\in \\mathbb {N}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N 0\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b comma c element-of double-struck upper Z\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b,c\\in \\mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b greater-than upper B\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>></mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b> B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U Subscript n Baseline minus b Superscript m Baseline equals c\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>U</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>b</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">U_n - b^m = c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at most two distinct solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis n comma m right-parenthesis element-of double-struck upper N squared\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(n,m)\\in \\mathbb {N}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to upper N 0\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq N_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we apply our result to the special case of Tribonacci numbers given by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T 1 equals upper T 2 equals 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_1= T_2=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T 3 equals 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_3=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript n Baseline equals upper T Subscript n minus 1 Baseline plus upper T Subscript n minus 2 Baseline plus upper T Subscript n minus 3\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_{n}=T_{n-1}+T_{n-2}+T_{n-3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By means of the LLL-algorithm and continued fraction reduction we are able to prove <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N 0 equals 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N_0=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B equals e Superscript 438\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>438</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B=e^{438}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The corresponding reduction algorithm is implemented in Sage.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"193 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3854","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Let (Un)n∈N(U_n)_{n\in \mathbb {N}} be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants BB and N0N_0 such that for any b,c∈Zb,c\in \mathbb {Z} with b>Bb> B the equation Un−bm=cU_n - b^m = c has at most two distinct solutions (n,m)∈N2(n,m)\in \mathbb {N}^2 with n≥N0n\geq N_0 and m≥1m\geq 1. Moreover, we apply our result to the special case of Tribonacci numbers given by T1=T2=1T_1= T_2=1, T3=2T_3=2 and Tn=Tn−1+Tn−2+Tn−3T_{n}=T_{n-1}+T_{n-2}+T_{n-3} for n≥4n\geq 4. By means of the LLL-algorithm and continued fraction reduction we are able to prove N0=2N_0=2 and B=e438B=e^{438}. The corresponding reduction algorithm is implemented in Sage.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.