High Entropy Electrolytes for Practical Lithium Metal Batteries

Pub Date : 2023-05-15 DOI:10.26434/chemrxiv-2022-j40p4-v2
Sang Cheol Kim, Jingyang Wang, Rong Xu, Pu Zhang, Yuelang Chen, Zhuojun Huang, Yufei Yang, Zhiao Yu, Solomon Oyakhire, Wenbo Zhang, Louisa Greenburg, Mun Sek Kim, David Boyle, Philaphon Sayavong, Yusheng Ye, Jian Qin, Zhenan Bao, Yi Cui
{"title":"High Entropy Electrolytes for Practical Lithium Metal Batteries","authors":"Sang Cheol Kim, Jingyang Wang, Rong Xu, Pu Zhang, Yuelang Chen, Zhuojun Huang, Yufei Yang, Zhiao Yu, Solomon Oyakhire, Wenbo Zhang, Louisa Greenburg, Mun Sek Kim, David Boyle, Philaphon Sayavong, Yusheng Ye, Jian Qin, Zhenan Bao, Yi Cui","doi":"10.26434/chemrxiv-2022-j40p4-v2","DOIUrl":null,"url":null,"abstract":"Electrolyte engineering is crucial for improving battery performance, particularly for lithium metal batteries. Recent advances in electrolytes have greatly improved cyclability by enhancing electrochemical stability at the electrode interfaces, but concurrently achieving high ionic conductivity has remained challenging. Here we report an electrolyte design strategy for enhanced lithium metal batteries by increasing the molecular diversity in electrolytes, which essentially leads to high entropy electrolytes (HEEs). We find that in weakly solvating electrolytes, the entropy effect reduces ion clustering while preserving the characteristic anion-rich solvation structures, which is characterized by synchrotron-based X-ray scattering and molecular dynamics simulations. Electrolytes with smaller-sized clusters exhibit a 2-fold improvement in ionic conductivity compared to conventional weakly-solvating electrolytes, enabling stable cycling at high current densities up to 2C (6.2 mA cm-2) in anode-free LiNi0.6Mn0.2Co0.2 (NMC622) || Cu pouch cells. The efficacy of the design strategy is verified by performance improvements in three disparate weakly solvating electrolyte systems.","PeriodicalId":0,"journal":{"name":"","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2022-j40p4-v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte engineering is crucial for improving battery performance, particularly for lithium metal batteries. Recent advances in electrolytes have greatly improved cyclability by enhancing electrochemical stability at the electrode interfaces, but concurrently achieving high ionic conductivity has remained challenging. Here we report an electrolyte design strategy for enhanced lithium metal batteries by increasing the molecular diversity in electrolytes, which essentially leads to high entropy electrolytes (HEEs). We find that in weakly solvating electrolytes, the entropy effect reduces ion clustering while preserving the characteristic anion-rich solvation structures, which is characterized by synchrotron-based X-ray scattering and molecular dynamics simulations. Electrolytes with smaller-sized clusters exhibit a 2-fold improvement in ionic conductivity compared to conventional weakly-solvating electrolytes, enabling stable cycling at high current densities up to 2C (6.2 mA cm-2) in anode-free LiNi0.6Mn0.2Co0.2 (NMC622) || Cu pouch cells. The efficacy of the design strategy is verified by performance improvements in three disparate weakly solvating electrolyte systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
实用锂金属电池用高熵电解质
电解质工程是提高电池性能的关键,尤其是锂金属电池。电解质的最新进展通过增强电极界面的电化学稳定性大大改善了可循环性,但同时实现高离子导电性仍然具有挑战性。在这里,我们报告了一种通过增加电解质中的分子多样性来增强锂金属电池的电解质设计策略,这本质上导致了高熵电解质(HEEs)。我们发现,在弱溶剂化电解质中,熵效应减少了离子聚集,同时保留了典型的富阴离子溶剂化结构,这是基于同步加速器的x射线散射和分子动力学模拟的特征。与传统的弱溶剂化电解质相比,具有较小尺寸簇的电解质的离子电导率提高了2倍,能够在无阳极LiNi0.6Mn0.2Co0.2 (NMC622) Cu袋电池中以高达2C (6.2 mA cm-2)的高电流密度稳定循环。通过在三种不同的弱溶剂化电解质体系中的性能改进,验证了该设计策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1