{"title":"On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces","authors":"Bangti Jin, Željko Kereta","doi":"10.1137/22m1518542","DOIUrl":null,"url":null,"abstract":"In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in Banach spaces. SGD and its variants have been established as one of the most successful optimization methods in machine learning, imaging, and signal processing, to name a few. At each iteration SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces. In this work we present a novel convergence analysis of SGD for linear inverse problems in general Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution and establish the regularizing property for suitable a priori stopping criteria. Numerical results are also presented to illustrate features of the approach.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"34 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1518542","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in Banach spaces. SGD and its variants have been established as one of the most successful optimization methods in machine learning, imaging, and signal processing, to name a few. At each iteration SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces. In this work we present a novel convergence analysis of SGD for linear inverse problems in general Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution and establish the regularizing property for suitable a priori stopping criteria. Numerical results are also presented to illustrate features of the approach.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.