Unraveling the complexity: understanding the deconvolutions of RNA-seq data

Kavoos Momeni, Saeid Ghorbian, Ehsan Ahmadpour, Rasoul Sharifi
{"title":"Unraveling the complexity: understanding the deconvolutions of RNA-seq data","authors":"Kavoos Momeni, Saeid Ghorbian, Ehsan Ahmadpour, Rasoul Sharifi","doi":"10.1186/s41231-023-00154-8","DOIUrl":null,"url":null,"abstract":"Abstract Deconvolution of RNA sequencing data is a computational method used to estimate the relative proportions of different cell types or subpopulations within a heterogeneous sample based on gene expression profiles. This technique is particularly useful in studies where the goal is to identify changes in gene expression that are specific to a particular cell type or subpopulation. The deconvolution process involves using reference gene expression profiles from known cell types or subpopulations to infer the relative abundance of these cells within a mixed sample. This is typically done using linear regression or other statistical methods to model the observed gene expression data as a linear combination of the reference profiles. Once the relative proportions of each cell type or subpopulation have been estimated, downstream analyses can be performed on each component separately, allowing for more precise identification of cell-type-specific changes in gene expression. Overall, deconvolution of RNA sequencing data is a powerful tool for dissecting complex biological systems and identifying cell-type-specific molecular signatures that may be relevant for disease diagnosis and treatment.","PeriodicalId":75244,"journal":{"name":"Translational medicine communications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational medicine communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41231-023-00154-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Deconvolution of RNA sequencing data is a computational method used to estimate the relative proportions of different cell types or subpopulations within a heterogeneous sample based on gene expression profiles. This technique is particularly useful in studies where the goal is to identify changes in gene expression that are specific to a particular cell type or subpopulation. The deconvolution process involves using reference gene expression profiles from known cell types or subpopulations to infer the relative abundance of these cells within a mixed sample. This is typically done using linear regression or other statistical methods to model the observed gene expression data as a linear combination of the reference profiles. Once the relative proportions of each cell type or subpopulation have been estimated, downstream analyses can be performed on each component separately, allowing for more precise identification of cell-type-specific changes in gene expression. Overall, deconvolution of RNA sequencing data is a powerful tool for dissecting complex biological systems and identifying cell-type-specific molecular signatures that may be relevant for disease diagnosis and treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭开复杂性:理解RNA-seq数据的反卷积
RNA测序数据的反褶积是一种计算方法,用于估计基于基因表达谱的异质样品中不同细胞类型或亚群的相对比例。这项技术在旨在确定特定细胞类型或亚群的基因表达变化的研究中特别有用。反褶积过程包括使用来自已知细胞类型或亚群的参考基因表达谱来推断混合样本中这些细胞的相对丰度。这通常使用线性回归或其他统计方法来模拟观察到的基因表达数据作为参考谱的线性组合。一旦估算出每种细胞类型或亚群的相对比例,就可以分别对每种成分进行下游分析,从而更精确地识别基因表达中细胞类型特异性的变化。总的来说,RNA测序数据的反褶积是解剖复杂生物系统和识别可能与疾病诊断和治疗相关的细胞类型特异性分子特征的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Neuron-specific enolase in diagnosis and prognosis of delirium: a systematic review Glial cell transplant for brain diseases: the supportive saviours? Abolished clustering of MeCP2T158M can be partially reverted with small molecules The gut microbiota patterns of patients with COVID-19: protocol for a case-control study Fibrotic remodeling in joint diseases: induction and inhibition of fibrosis in fibroblast-like synoviocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1