{"title":"Impact of Ferroelectric Material BaTiO<sub>3</sub> on Negative Capacitance TFET Device and Its Circuit Application","authors":"Amandeep Singh, Sanjeet Kumar Sinha, Sweta Chander","doi":"10.1080/10584587.2023.2227054","DOIUrl":null,"url":null,"abstract":"With the increase in scaling of transistors in nanometer regime, various short channel effects are emerging in transistor operation that are required to resolved while putting conventional transistor to any practical application. Various device modifications and structure improvizations have been made and reported by the researchers to overcome the short channel effects and replace the conventional MOSFET with an optimized device in practical circuit applications. The device structure proposed in this work incorporates the negative capacitance phenomenon for making subthreshold swing steeper and enhancing current ratio of TFET. Further the device dimensions are being optimized to get improvised characteristics and best results are obtained at 3 nm thick BaTiO3 Ferroelectric material for making negative capacitance gate stack. In this paper, negative capacitance TFET so formed is used for implementing inverter and 1 T DRAM cell. Results obtained shows that the inverter and DRAM cell operates at a very lower supply voltage and are more suitable for low power applications as compared to conventional circuits.","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"10 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2227054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the increase in scaling of transistors in nanometer regime, various short channel effects are emerging in transistor operation that are required to resolved while putting conventional transistor to any practical application. Various device modifications and structure improvizations have been made and reported by the researchers to overcome the short channel effects and replace the conventional MOSFET with an optimized device in practical circuit applications. The device structure proposed in this work incorporates the negative capacitance phenomenon for making subthreshold swing steeper and enhancing current ratio of TFET. Further the device dimensions are being optimized to get improvised characteristics and best results are obtained at 3 nm thick BaTiO3 Ferroelectric material for making negative capacitance gate stack. In this paper, negative capacitance TFET so formed is used for implementing inverter and 1 T DRAM cell. Results obtained shows that the inverter and DRAM cell operates at a very lower supply voltage and are more suitable for low power applications as compared to conventional circuits.
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.