Mercedes Marzoa Tanco, Guillermo Trinidad Barnech, Federico Andrade, Javier Baliosian, Martin LLofriu, JM Di Martino, Gonzalo Tejera
{"title":"MAgro dataset: A dataset for simultaneous localization and mapping in agricultural environments","authors":"Mercedes Marzoa Tanco, Guillermo Trinidad Barnech, Federico Andrade, Javier Baliosian, Martin LLofriu, JM Di Martino, Gonzalo Tejera","doi":"10.1177/02783649231210011","DOIUrl":null,"url":null,"abstract":"The agricultural industry is being transformed, thanks to recent innovations in computer vision and deep learning. However, the lack of specific datasets collected in natural agricultural environments is, arguably, the main bottleneck for novel discoveries and benchmarking. The present work provides a novel dataset, Magro, and a framework to expand data collection. We present the first version of the Magro Dataset V1.0, consisting of nine ROS bags (and the corresponding raw data) containing data collected in apple and pear crops. Data were gathered, repeating a fixed trajectory on different days under different illumination and weather conditions. To support the evaluation of loop closure algorithms, the trajectories are designed to have loop closures, revisiting some places from different viewpoints. We use a Clearpath’s Jackal robot equipped with stereo cameras pointing to the front and left side, a 3D LIDAR, three inertial measurement units (IMU), and wheel encoders. Additionally, we provide calibrated RTK GPS data that can be used as ground truth. Our dataset is openly available, and it will be updated to have more data and variability. Finally, we tested two existing state-of-the-art algorithms for vision and point cloud-based localization and mapping on our novel dataset to validate the dataset’s usability.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"75 1","pages":"0"},"PeriodicalIF":7.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231210011","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The agricultural industry is being transformed, thanks to recent innovations in computer vision and deep learning. However, the lack of specific datasets collected in natural agricultural environments is, arguably, the main bottleneck for novel discoveries and benchmarking. The present work provides a novel dataset, Magro, and a framework to expand data collection. We present the first version of the Magro Dataset V1.0, consisting of nine ROS bags (and the corresponding raw data) containing data collected in apple and pear crops. Data were gathered, repeating a fixed trajectory on different days under different illumination and weather conditions. To support the evaluation of loop closure algorithms, the trajectories are designed to have loop closures, revisiting some places from different viewpoints. We use a Clearpath’s Jackal robot equipped with stereo cameras pointing to the front and left side, a 3D LIDAR, three inertial measurement units (IMU), and wheel encoders. Additionally, we provide calibrated RTK GPS data that can be used as ground truth. Our dataset is openly available, and it will be updated to have more data and variability. Finally, we tested two existing state-of-the-art algorithms for vision and point cloud-based localization and mapping on our novel dataset to validate the dataset’s usability.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.