Stimuli‐responsive hydrogel microgels on porous silicon one‐dimensional photonic crystals: Tapping the full potential for optical sensor applications

Ruth Fabiola Balderas Valadez, Augusto David Ariza Flores, Claudia Pacholski
{"title":"Stimuli‐responsive hydrogel microgels on porous silicon one‐dimensional photonic crystals: Tapping the full potential for optical sensor applications","authors":"Ruth Fabiola Balderas Valadez, Augusto David Ariza Flores, Claudia Pacholski","doi":"10.1002/nano.202300100","DOIUrl":null,"url":null,"abstract":"Abstract Porous silicon 1D photonic crystals, namely rugate filters, are covered with a loosely packed hexagonally ordered array of stimuli‐responsive hydrogel microgels, and the optical properties of the resulting hybrid sensor are thoroughly investigated. For this purpose, both rugate filters with and without hydrogel microgel on top are immersed in ethanol/water mixtures possessing different compositions and NaCl solutions. Reflectance spectra of all samples are taken and analyzed concerning the spectral positions and reflectance intensity of the strong peak related to the photonic crystal rugate peak as well as the side bands resulting from Fabry–Pérot interference at the interfaces bordering the porous silicon. For the latter analysis, a Fourier transform is applied to the side bands for calculating the effective optical thickness (EOT). Thereby it can be shown that the spectral position of both the rugate peak and the EOT peak is best suited for monitoring refractive index changes in the immersion medium whereas the swelling and collapse of the stimuli‐responsive hydrogel microgel can be only detected by variations in the amplitude of the rugate peak and the EOT peak. These results are confirmed by simulations using a simple geometrical model and shall serve as guide for developing tailor‐made optical sensors.","PeriodicalId":74238,"journal":{"name":"Nano select : open access","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano select : open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nano.202300100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Porous silicon 1D photonic crystals, namely rugate filters, are covered with a loosely packed hexagonally ordered array of stimuli‐responsive hydrogel microgels, and the optical properties of the resulting hybrid sensor are thoroughly investigated. For this purpose, both rugate filters with and without hydrogel microgel on top are immersed in ethanol/water mixtures possessing different compositions and NaCl solutions. Reflectance spectra of all samples are taken and analyzed concerning the spectral positions and reflectance intensity of the strong peak related to the photonic crystal rugate peak as well as the side bands resulting from Fabry–Pérot interference at the interfaces bordering the porous silicon. For the latter analysis, a Fourier transform is applied to the side bands for calculating the effective optical thickness (EOT). Thereby it can be shown that the spectral position of both the rugate peak and the EOT peak is best suited for monitoring refractive index changes in the immersion medium whereas the swelling and collapse of the stimuli‐responsive hydrogel microgel can be only detected by variations in the amplitude of the rugate peak and the EOT peak. These results are confirmed by simulations using a simple geometrical model and shall serve as guide for developing tailor‐made optical sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔硅一维光子晶体上的刺激响应水凝胶微凝胶:挖掘光学传感器应用的全部潜力
摘要:将多孔硅一维光子晶体(即rugate滤波器)覆盖一层松散堆积的六边形有序刺激响应水凝胶微凝胶阵列,并对所得到的混合传感器的光学特性进行了深入研究。为此,将顶部有和没有水凝胶微凝胶的rugate过滤器浸入具有不同成分和NaCl溶液的乙醇/水混合物中。对所有样品的反射光谱进行了分析,分析了与光子晶体栅极峰相关的强峰的光谱位置和反射强度,以及与多孔硅交界面的法布里-帕氏干涉产生的侧带。对于后一种分析,对边带进行傅里叶变换以计算有效光学厚度(EOT)。由此可以看出,rugate峰和EOT峰的光谱位置最适合监测浸没介质中的折射率变化,而刺激响应水凝胶微凝胶的膨胀和崩溃只能通过rugate峰和EOT峰的振幅变化来检测。这些结果通过简单几何模型的仿真得到了证实,并为开发定制光学传感器提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent advances in porous nanomaterials‐based drug delivery systems for osteoarthritis Recent advances in TiO2 nanotube layers – A mini review of the latest developments in nanotube preparation and applications in photocatalysis and microwave sensing Porous silicon microneedle patches for delivery of polymyxin‐based antimicrobials First‐principles investigations of the Dion‐Jacobson PLS CsLaNb2O7: An outstanding multifunctional material for green technology Advanced porous materials for antimicrobial treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1